首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unraveling how climate change impacts the diversity and distribution patterns of organisms is a major concern in ecology, especially with climate-sensitive species, such as dung beetles. Often found in warmer weather conditions, beetles are used as bio-indicators of environmental conditions. By using an altitudinal gradient as a proxy for climate change (i.e., space-for-time substitution), we assessed how changes in climatic variables, such as temperature and precipitation, impact patterns of dung beetle diversity and distribution in the Peruvian Andes. We recorded dung beetle diversity using three different types of baits, feces, carrion, and fruits, distributed in 18 pitfall traps in five different altitudinal sites (from 900 to 2500 m, 400 m apart from each other) in the rainy and dry season. We found that (i) dung beetle richness and abundance were influenced by the climate gradient, (ii) seasonality influenced beetle richness, which was high in the wet season, but did not influence abundance, (iii) dung beetle richness and abundance fit to a hump-shaped distribution pattern along the altitudinal gradient, and (iv) species richness is the beta-diversity component that best describes the composition of dung beetle species along the altitudinal gradient. Our data show that the distribution and diversity of dung beetles are different at larger scales, with different patterns resulting from the response of species to both abiotic and biotic factors.  相似文献   

2.
Biodiversity pattern and life-form spectra were studied along a 3,000 m altitudinal gradient from a semi-desert area to the alpine peak of Tochal Mountain. The gradient is located on the southern slopes of Central Alborz with a Mediterranean continental climate. DCA ordination was applied to 1,069 relevés and 7 quantitative variables to discover the relation of diversity and altitude. A biodiversity pattern was obtained by relating values for species richness and Shannon-Wiener’s index to 100-m altitudinal sections. Altitude was determined as the major ecological gradient. Both diversity indices are negatively correlated with altitude and show a decreasing trend beyond a peak in species richness at 1,800–1,900 m a.s.l. towards a very low diversity in the high alpine zone. The biodiversity peak does not match with the potential tree line in the area (2,500–3,000 m a.s.l.). The high diversity in foothills can be related to habitat heterogeneity, longer suitable climatic conditions, and diverse disturbance factors, while unfavorable conditions at high-altitude alpine and low-altitude desert areas reduce the number of species at both extremes. Life-form patterns clearly change along altitudinal gradient. Annuals with decreasing trend, and hemicryptophytes and chamaephytes with increasing trend along the altitudinal gradient are notable patterns of life form in the area. Temperature, soil moisture and nutrients are the main factors that explain the ecological influence of altitude on species diversity and life-form patterns in the semi-arid steppe vegetation of the area.  相似文献   

3.
百花山植物群落物种多样性研究   总被引:7,自引:0,他引:7  
基于百花山50个样方的调查资料,从不同类型群落的物种多样性及其与海拔的关系等方面对百花山植被进行了分析,并且用DCA排序和海拔高程排序对物种多样性在环境梯度上的分布格局进行了初步研究。结果表明:群落内不同生长型的物种丰富度指数在森林群落中大小顺序为草本层>灌木层>乔木层,灌丛群落主要表现为草本层﹥灌木层,只有荆条灌丛表现为灌木层>草本层;Shannon-Wiener指数在山杨—华北落叶松群落中表现为灌木层>草本层>乔木层,其他森林群落为草本层>灌木层>乔木层,在灌丛群落中主要表现为草本层>灌木层,只有荆条灌丛表现为灌木层>草本层;均匀度指数在灌丛群落中表现为灌木层>草本层,在辽东栎林和山杨—华北落叶松林中表现为灌木层>乔木层>草本层,而其他森林群落表现为乔木层>灌木层>草本层。物种多样性在DCA第一轴排序和海拔高程梯度上都表现出单峰曲线变化趋势,但拟和效果的显著程度不同:丰富度和均匀度指数在海拔高程上曲线的拟和效果优于DCA环境梯度排序效果;而多样性指数则相反。  相似文献   

4.
Climate change predominated by warming over the past decades has affected plant biodiversity, distribution, and ecosystem functioning in alpine grasslands. Yet, little is known about the interactive effect of climate change and grazing on biodiversity and ecosystem functioning. Here, we conducted a vegetation translocation experiment (ten soil‐vegetation blocks were translocated from high‐altitudinal site 3,245 m to low‐altitudinal site 3,045 m) combined with grazing treatment in an alpine meadow on the Tibetan Plateau. The results showed that (a) translocation induced effect of climate change from harsh, high‐altitudinal site to benign, low‐altitudinal site significantly promoted species richness, and density of asexual and sexual seedling, with an increase in the proportion of asexual recruitment to sexual recruitment; (b) grazing decreased the proportion of asexual seedling to sexual recruitment within community, led to a shift in the dominant plant functional groups from graminoids and legumes to forbs; and (c) grazing partly offset the increased species richness of seedling, but not seedling density, induced by climate change. These findings suggest that moderate grazing may buffer the effect of climate change on the plant community composition, and thus, functional role in alpine meadows. Further understanding the influence of climate change on grassland ecosystems needs to consider the non‐additive effect of grazing and climate change to sustainability of grassland services.  相似文献   

5.
The Alborz Mountains, the second largest range in Iran, is, on its southern slopes, mainly covered by steppe vegetation. These dry slopes also include ‘green islands’ of wetland. Floristic diversity and environmental characteristics of 45 of these little-studied wetland sites have been assessed along an altitudinal gradient using one-way ANOVA, Pearson r and detrended correspondence analysis/canonical correspondence analysis (DCA/CCA) analyses. The wetlands proved to be of conservation importance with 310 plant taxa, including 35 endemics or subendemics. Predictably, and consistent with the phytosociological classification of Klein [2001. La végétation altitudinale de L’Alborz Central (Iran): Entre les régions Irano-Touranienne et Euro-sibérienne. Institut Français de Recherche en Iran, Téhéran], there were parallel changes in vegetation both within wetlands and the surrounding steppes and in DCA/CCA analyses altitude appeared to be the primary determinant of floristic composition. Upper mountain wetlands are particularly species-rich and contain many endemics and other species of a narrow phytogeographical distribution. Soil pH declined with altitude, perhaps in part as a consequence of low salinity (and high pH) in the mountains. Consistent with the work of Raunkiaer [1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford], hemicryptophytes are mainly restricted to upper mountain areas. Though correlated both directly with altitude and with correlation in DCA/CCA plots, phytogeography, life-form and soil pH fail to adequately explain the ecological processes that maintain the altitudinal gradient in vegetation types and species composition. Further studies on site productivity, soil chemistry and climate-related variables are, therefore, on-going in an attempt to understand more fully the ecosystem processes maintaining the diversity of these important wetland sites.  相似文献   

6.
Tertiary‐relict Hyrcanian (Caspian) forest along the shores of the southern Caspian Sea is a center of biodiversity. Still, there is little information on plant diversity patterns in this area. This study evaluated plant diversity, variation in life forms, and geographical distribution of the zonal vegetation types and their relationships with environmental variables, in the educational and experimental forest of Kheyrudkenar, an important protected area in the central Hyrcanian forest of northern Iran. For this purpose, 226 vegetation plots of 400 m2 were laid out along two altitudinal transects from the lowlands (100 m a.s.l.) to the timberline (2000 m a.s.l.). Four vegetation types were identified using modified TWINSPAN, indirect and direct gradient analyses. Species‐related (species diversity indices, life form and phytogeographical elements) and environmental variables (climate, topographic and soil variables) were calculated and subjected to one‐way ANOVA among the vegetation types. Both constrained (CCA) and unconstrained (DCA) ordination analyses showed an almost identical variation of the floristic composition along their axes and demonstrated that there are two main gradients in the Hyrcanian forest. Elevation together with annual precipitation and mean annual temperature were the most important factors controlling the floristic composition in the area. Topographic features such as slope inclination and heat index were found to be important within an elevation zone/vegetation type. Soil physical and chemical properties were of secondary importance for the separation of the vegetation types. This knowledge will be useful for forest management and conservation practices in the Hyrcanian area with its distinct and unique flora and vegetation.  相似文献   

7.
This study examines vascular plant species richness along an altitudinal gradient in alpine Australia. Vascular plant composition and soil temperature records were obtained for five summits (from 1729 m to 2114 m a.s.l.) using sampling protocols from the Global Observation Research Initiative in Alpine Environments program. Species richness was examined against altitude, aspect and climatic variables at different spatial scales (10 × 10 cm quadrats, 1 m2 quadrats, clusters of 4 * 1 m2 quadrats, for the summit area above a line 5 m altitudinally below the summit (the −5 m isoline), for the extended summit down to the −10 m isoline). About 75 taxa (70 species, 5 graminoid genera) were recorded, 9 of which are endemic to the small alpine area of ∼100 km2. There were significant linear relationships between species richness and altitude and climatic variables for the top to −5 isolines on the summits. However, there was no consistent pattern for species richness at other spatial scales, altitude, aspect or climatic variables. The proportion of species for the whole summits with localised distributions (local endemics) increased with altitude. Predicted increasing temperatures and reduced snowcover is likely to result in an increase in species richness as shrubs, herbs and introduced weeds become more common at higher altitude. Because Australian alpine areas occur in narrow altitudinal bands with no nival zone, there are no higher altitudinal refuges available for alpine species. Therefore many of these species are likely to be at risk of extinction from climate change.  相似文献   

8.
9.
Changes in abiotic factors along altitudinal and latitudinal gradients cause powerful environmental gradients. The topography of alpine areas generates environmental gradients over short distances, and alpine areas are expected to experience greater temperature increase compared to the global average. In this study, we investigate alpha, beta, and gamma diversity, as well as community structure, of vascular plant communities along altitudinal gradients at three latitudes in the Swedish mountains. Species richness and evenness decreased with altitude, but the patterns within the altitudinal gradient varied between sites, including a sudden decrease at high altitude, a monotonic decrease, and a unimodal pattern. However, we did not observe a decline in beta diversity with altitude at all sites, and plant communities at all sites were spatially nested according to some other factors than altitude, such as the availability of water or microtopographic position. Moreover, the observed diversity patterns did not follow the latitudinal gradient. We observed a spatial modularity according to altitude, which was consistent across sites. Our results suggest strong influences of site‐specific factors on plant community composition and that such factors partly may override effects from altitudinal and latitudinal environmental variation. Spatial variation of the observed vascular plant communities appears to have been caused by a combination of processes at multiple spatial scales.  相似文献   

10.
雅鲁藏布江河岸植物物种丰富度分布格局及其环境解释   总被引:2,自引:0,他引:2  
沿环境梯度物种多样性的分布格局及其环境影响因子的研究是生态学研究的重点内容之一。雅鲁藏布江是我国海拔最高的大河, 目前还没有针对其流域的河岸植物群落物种丰富度分布格局的系统研究。作者沿海拔梯度从雅鲁藏布江上游源头区至下游共设置了15个海拔样带, 在每个海拔样带随机取6个5 m×5 m样方, 共对90个样方的河岸植物群落物种组成和植被类型进行了调查, 共记录到238种维管束植物。DCA排序结果表明物种组成变化主要受海拔和经度控制。CCA排序区分出5种大的植被类型, 即高寒草甸或高寒草原、高山草原、两种亚高山灌丛草原和林缘灌丛植被。各植被类型的分布和变化主要受海拔和经度影响。雅鲁藏布江河岸植物物种丰富度沿海拔和经度梯度呈浅“U”形分布格局, 物种丰富度与年均降水量和植被盖度成显著正相关。  相似文献   

11.
Abstract. We studied the germinable soil seed bank of tall‐tussock grasslands along an altitudinal gradient in the mountains of central Argentina. We selected 10 sampling plots at three altitudinal levels (1200 m, 1600 m and 2200 m). We assessed the composition of the established vegetation and took ten compound soil samples (0 ‐ 5 cm depth) at each plot in autumn and spring. The soil samples were sieved, chilled, and incubated in a glasshouse to assess the composition of the seed bank. The similarity between the composition of the seed bank flora and that of the established vegetation was low throughout the gradient. Most species did not change their seed bank strategy along the gradient. Seed bank richness and density increased with altitude. Most species had a persistent seed bank at all altitudinal levels, and the proportion of such species increased with altitude. These results suggest that a cold climate directly and/or indirectly favours the formation of seed banks and seed persistence in the soil.  相似文献   

12.
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis: Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation–soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.  相似文献   

13.

Aims

To delineate boundaries of vegetation belts, characterize these belts by indicator species, plant functional types and plant distribution types, and explore options for climate change monitoring.

Location

Three research sites in the continental inland of West Greenland.

Methods

Based on spatially constrained clustering of 147 vegetation relevés and 145 transect plots of plant communities, boundaries of altitudinal vegetation belts were assessed. Indicators for altitudinal sections were identified from 664 vegetation relevés among vascular plants, bryophytes, lichens and plant functional types using indicator species analysis. The performance of different plant groups along the altitudinal gradient was visualized with response curves.

Results

Boundaries of altitudinal vegetation belts were detected at 400, 800 and 1175 m a.s.l. on north‐facing slopes and at 450, 900 and 1250 m a.s.l. on south‐facing slopes. The resulting four vegetation belts were well defined by 99 indicator species and nine indicator plant functional types. Species, plant functional types and vascular plant distribution types showed clear sequences along the altitudinal gradient, which partly resemble their distribution along the latitudinal gradient.

Conclusions

As an easily observable expansion of shrubs and a decline of mosses and lichens is expected, the boundary at 400/450 m a.s.l. is particularly promising for climate change monitoring. The anticipated replacement of numerous cryophilous by thermophilous indicator species, as well as an obvious shift of plant functional types suggest several monitoring options at 800/900 m a.s.l. The summit areas above 1175/1250 m a.s.l., having a discontinuous plant cover, are considered to be especially vulnerable to fast invasion by species of lower altitudes such as woody plants and sedges. Due to steep gradients and short migration distances in mountains, it can be assumed that these anticipated changes in the study area will be stronger and faster than the already observed changes along the latitudinal gradient in lowland areas of the Arctic.
  相似文献   

14.
Climate change can affect the process of carbon cycling and leaf litter decomposition in multiple ways, both directly and indirectly, though the strength and direction of this relationship is often context dependent. In this experiment, we followed decomposition of a standard litter type—senescent leaves of Fagus sylvatica collected from a single location—along a 1000 m altitudinal gradient of four sites over 2.5 years. To control the edaphic conditions, we transplanted intact turf mesocosms from three different land-use types [densely wooded, sparsely wooded, and unwooded (UW) pastures] from the highest altitude site into UW pastures along the altitudinal gradient from the moist, cool high-elevation site to the dry, warm low-elevation site, using shade cloth to mimic the light conditions in the original habitats. Decomposition in the drier UW pasture mesocosms increased with altitude, likely because of higher moisture at the highest sites. Decomposition in the more mesic mesocosms from sparsely and densely wooded sites was insensitive to altitude, suggesting an overriding moisture, rather than temperature, constraint on decomposition across these sites. The functional composition of decomposer microbial communities (fungal/bacterial ratio) was similarly insensitive to altitude. Our findings bring substantial evidence for the controlling role of soil moisture on litter decomposition, as well as for the indirect effects of climate through changes in the decomposer community.  相似文献   

15.
Wild ungulates like the guanaco are exposed to important changes in climate and plant diversity along altitudinal gradients in the Andes Mountains, such as in the Southern Andean Precordillera where three phytogeographic provinces are present in altitudinal belts. The guanaco’s diet and food availability were seasonally analyzed using microhistological analysis and point-quadrat transects at six sampling sites, representative of the phytogeographic belts along the altitudinal gradient. Plant cover and diversity decreased with growing altitude. Richness of plant species was poorer at the summit than in the lower altitudes, whereas the proportion of species eaten by guanacos increased with altitude. The diet included 77 species. Grasses were preferred and shrubs were avoided all year round. The grass Poa spp. occupied more than 50 % of the diet at all altitudes. Grasses were the main dietary item even at low altitudes, where shrubs constituted the main food available. Decreasing generalism with descending phytogeographic belts agrees with the prediction for altitudinal gradients. The increase of diversity in the diet during the winter decline of plant cover at high and middle altitudes follows that expected from the optimal foraging theory. The winter decline of vegetation and the dietary shift from grazing to browsing proved to be stronger as altitude increases and the climate become more rigorous. Plant species richness, food scarcity, and climate severity are relevant variables to explain altitudinal and seasonal changes in the diet of adaptive ungulates in mountain environments, such as the guanaco in the Southern Andean Precordillera.  相似文献   

16.
Species ranges are expected to expand along their cooler boundaries in response to rising temperatures associated with current global climate change. However, this ‘fingerprint’ of climate change is yet to be assessed for an entire flora. Here, we examine patterns of altitudinal range change in the complete native vascular flora of sub‐Antarctic Marion Island. We demonstrate a rapid mean upslope expansion in the flora since 1966, in response to 1.2 °C warming on the island. The 3.4±0.8 m yr?1 (mean±SE) upslope expansion rate documented is amongst the highest estimates from partial floras. However, less than half of the species in the flora were responsible for the expansion trend, demonstrating that the global fingerprint of warming may be driven by a highly responsive subset of the species pool. Individual range expansion rates varied greatly, with species‐specific niche requirements explaining some of this variation. As a result of the idiosyncratic expansion rates, altitudinal patterns of species richness and community composition changed considerably, with the formation of no‐analog communities at high and intermediate altitudes. Therefore, both species‐ and community‐level changes have occurred in the flora of Marion Island over a relatively short period of rapid warming, demonstrating the sensitivity of high latitude communities to climate change. Patterns of change within this flora illustrate the range of variation in species responses to climate change and the consequences thereof for species distributions and community reorganization.  相似文献   

17.
QuestionsDoes the vegetation composition of the forests of Nandiar Valley correlate with climatic, topographic and edaphic variables? Is it possible to identify plant communities through indicator species in relation to environmental gradients? Can this approach of classification and ordination will be helpful for conservation planning?LocationForests of Nandiar Valley, Moist temperate Western Himalayas Pakistan.MethodsEighty stands were selected for quantitative and qualitative characteristic of vegetation between an elevations of 525–3817 m. Species composition was recorded by using 400 m long transects. GPS, climatic, edaphic and topographic data were recorded for each sampling site. The relationship between habitat types, species composition and distribution along with climatic, edaphic and topographic variables were analyzed using TWINSPAN, Cluster analysis and DCA ordination.ResultsSum 325 vascular plants species belonging to 97 families were recorded. Diversity index and species richness was maximum in the moist temperate zone. Classification and ordination showed that the variance in species data was 7.07. Two-ways indicator species analysis classified the vegetation into eight plant communities. Indicator species analysis revealed that slope aspect, wind speed, temperature, dew point, wet bulb, pH, organic matter and phosphorous were the strongest parameters (p  0.05) determining plant community composition and indicator species in each habitat. The results also show the strength of the environment – species relationship using Monte Carlo procedures. DCA ordination grouped different species having similar habitat and habitats having common species.ConclusionsThe multivariate analysis of the vegetation along with environmental variables of Nandiar valley confirmed the indicators of each sort of vegetation communities/microclimatic zones which could further be used in conservation planning and management not only in studied area but also in the adjacent regions as well as in the areas exhibit similar sort of climatic, edaphic and topographic conditions.  相似文献   

18.
Soil properties of terrestrial ecosystems are controlled by a variety of factors that operate at different scales. We tested the role of abiotic and biotic factors that potentially influence spatial gradients of total ion content, acidity, carbon, total nitrogen, and total phosphorous in topsoil. We studied a network of Mediterranean montane meadows that spans a 2000-m altitudinal gradient. The analyzed factors were grouped into two spatial scales: a landscape scale (climate and land form) and a field scale (topography, soil texture, soil moisture, and plant community composition). Total ion content and acidity are the major and independent variation trends of soil geochemistry. Soil acidity, carbon, and nitrogen increased along the altitudinal gradient whereas there was no relationship between total ion content and phosphorous and elevation. Climate had no direct influence on the analyzed gradients; all effects of climate were indirect through plant community composition and/or soil moisture. The results point to three types of models that explain the gradients of soil chemical composition: (1) a predominantly biotic control of carbon and nitrogen, (2) a predominantly abiotic control of acidity, and (3) a combined biotic and abiotic control of total ionic content. No direct or indirect effects explained the gradient of phosphorous. In our study region (central Spain), climate is predicted to turn more arid and soils will lose moisture. According to our models, this will result in less acid and fertile soils, and any change in plant community composition will modify gradients of soil carbon, nitrogen, total ion content, and acidity.  相似文献   

19.
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.  相似文献   

20.
The mountain wetlands studied represent a unique habitat on the southern slopes of the Alborz mountain range, the second largest range in Iran. In comparison with other parts of this range the western section is ecologically and botanically unknown. Floristic and vegetation variation were assessed using diverse environmental variables along a broad altitudinal span (350 m to 3200 m a.s.l.). Using both statistical and ordination analyses floristic variation was assessed on three defined altitudinal belts which were delimited based on Alborz macro-climatic boundaries. The distribution of individual wetland plant species, of phytogeographic elements and of life-forms all differ among altitudinal belts. This result is also shown in both direct and indirect analyses of ordinations. The proportion of geophytes significantly increases with altitude and geophytes are very well represented in the upper altitudinal belt. The number of species of a narrow phytogeographical distribution (e.g. endemics) increases with altitude, soil pH and EC declined with altitude. The first axis of DCA ordination with passively projected environmental variables indicates that, organic matter and concentration of Fe2+ are increased toward higher altitude. The second axis of ordination is related to both soil texture and slope inclination. The distribution of species in the CCA species plot is also close to the distribution of those in the DCA ordination. This study indicates that altitude and slope together with other dependent environmental variables (pH, EC, Ca2+ and soil texture) are the main ecological factors controlling species distribution across the Western Alborz wetland sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号