首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of root hemiparasites depends strongly on host species identity, but it remains unknown whether there exist general patterns in the quality of species as hosts for hemiparasites and in their sensitivity to parasitism. In a comparative approach, the model root hemiparasites Rhinanthus minor and R. alectorolophus were grown with 25 host species (grasses, forbs, and legumes) at two nutrient levels. Hosts grown without parasites served as a control. Host species identity strongly influenced parasite biomass and other traits, and both parasites grew better with legumes and grasses than with forbs. The biomass of R. alectorolophus was much higher than that of R. minor with all host plants and R. alectorolophus responded much more strongly to higher nutrient availability than R. minor. The performance of the two species of Rhinanthus with individual hosts was strongly correlated, and it was also correlated with that of R. alectorolophus and the related Odontites vulgaris in previous experiments with many of the same hosts, but only weakly with that of the less closely related Melampyrum arvense. The negative effect of R. minor on host biomass was less strong than that of R. alectorolophus, but stronger relative to its own biomass, suggesting that it is more parasitic. The impact of the two parasites on individual hosts did not depend on nutrient level and was correlated. Several legumes and grasses were tolerant of parasitism. While R. minor slightly reduced mean overall productivity, R. alectorolophus increased it with several species, indicating that the loss of host biomass was more than compensated by that of the parasite. The results show that closely related parasites have similar host requirements and correlated negative effects on individual hosts, but that there are also specific interactions between pairs of parasitic plants and their hosts.  相似文献   

2.
Root hemiparasites like Rhinanthus angustifolius C.C. Gmel and R. minor L. have a potential to accelerate the restoration of semi-natural grasslands because they may decrease above-ground biomass of the vegetation. This, in turn, may be beneficial for species diversity. It is known that hemiparasites often accumulate high nutrient concentrations in their above-ground parts, resulting in high quality litter. Because of the short life cycle of many parasitic plants, litter is released early in the season and the main part is not removed from the grassland by hay-making. This has been shown to yield an increased nutrient availability locally. We performed an introduction experiment with R. angustifolius and R. minor in three semi-natural grasslands in Flanders (Belgium). In the second year after sowing, the above-ground nitrogen (N) content of the grasses and of the potential host vegetation (excluding the hemiparasite), was increased in the parasitized plots. The reduction of grass (and legume) above-ground biomass in parasitized plots resulted in a decrease in the total above-ground N uptake of grasses, host and total vegetation (ex- and including the parasite, respectively) of the parasitized plots compared to the control. Furthermore, with a tracer experiment (15N), we demonstrated that the N from the added tracer was relatively less available in parasitized plots, suggesting larger soil N pools in these treatments. This is probably the consequence of increased mineralization, resulting from the high-quality, parasitic litter. Further experiments should be conducted to investigate the impact of hemiparasitic Rhinanthus spp., e.g. on the availability of other nutrients such as phosphorus.  相似文献   

3.
Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade‐off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade‐off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade‐off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade‐off for grasses (scored at −0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the “conservative” strategy in grasses, in which plants with larger BGB trade‐off depends on gigantic roots for soil resources, and the “opportunistic” strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.  相似文献   

4.
  • The facultative root hemi‐parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi‐parasite.
  • Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi‐parasite, while plant biomass was measured for both R. minor and its host.
  • Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots.
  • Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi‐parasite on community productivity and diversity.
  相似文献   

5.
Summary Rhinanthus minor (yellow-rattle) is a widespread hemiparasitic plant of grassland habitats throughout Great Britain. It is usually considered to be indicative of species-rich grassland, but in a survey of 14 habitats throughout Britain it was found that R. minor at the time of flowering normally occupied relatively low-diversity patches within areas of high diversity as determined by the number of species, Simpson's Index and the Shannon-Wiener Index. Following the death of adult plants of R. minor in the summer it was shown that the pattern of species diversity changed such that by the time R. minor germinated in the following spring the differences between the areas containing and not containing R. minor were much less distinct. A perturbation experiment in which R. minor was removed from four sites indicated that the effect of the removal of R. minor on the development of community structure over the next year was to increase species diversity on three of the sites and decrease it on the fourth. Those species which responded to the removal of R. minor by an increase in abundance were shown to be preferred hosts. All three lines of evidence point to the fact R. minor has a significant effect on the species diversity of the communities in which it grows by selectively parasitizing components of the flora and modifying the competitive relationships between plants. However, as the communities generally responded to the removal of R. minor by an increase in diversity and as the general survey indicated that R. minor is generally associated with areas of low diversity it would appear that the plants which are selectively parasitized are generally not the competitive dominants in the community.  相似文献   

6.
In the last few decades unimproved semi-natural grasslands have been affected by intensification of land use and habitat fragmentation. Because of their biodiversity these species-rich grasslands are of high conservation importance and efforts are under way to restore such habitats. Detailed knowledge of within species diversity will aid deciding on the optimal seed source for such restoration projects, e.g. local genotypes or ecotypes. Rhinanthus minor is a species that is typically found in semi-natural grasslands and is commonly used in grassland restoration projects. This is because R. minor is a hemiparasitic plant that takes minerals and nutrients from its host, which in turn decreases the host's biomass and leads to opportunities for less competitive species in the vegetation. Here, we investigate genetic diversity within and between R. minor populations. This allowed us to test whether the six different subspecies of R. minor that have been described in the UK, based on their morphology, flowering time, and habitat, can be differentiated using molecular markers. We identified moderate levels of genetic differentiation between R. minor populations within the UK. In addition, R. minor individuals from the UK appear to be distinct from R. minor and Rhinanthus angustifolius individuals from other European countries based on microsatellite genotyping and DNA sequencing of cpDNA and rDNA ITS. The molecular markers used in the current study did not separate populations of R. minor based on either their subspecies or habitat. The implication for the use of R. minor in grassland restoration projects seems to be that it is not necessary to use local seeds or seeds from the same subspecies.  相似文献   

7.
1. Root hemiparasites are common components of many ecosystems and can affect both the biomass and the nutritional quality of the plants they infect. The consequences of these modifications for the preference and performance of three herbivore feeding guilds sharing a host with the hemi‐parasite were examined. 2. It was predicted that as the hemiparasite increased in biomass its impact on the host would increase, as would the indirect impacts on the herbivores. It was also predicted that herbivores from different feeding guilds would respond differently to the presence of the hemiparasite, reflecting the extent to which they utilise resources disrupted by the parasite and hence are in competition with it. 3. The preference and performance of phloem‐feeding aphids, xylem‐feeding spittle bugs, and leaf‐feeding grasshoppers were measured on the host grass species, Holcus lanatus L. (Poaceae), with and without attachment from the hemi‐parasite, Rhinanthus minor L. (Orobanchaceae). 4. The effects of R. minor on the host were dependent on the hemiparasite's stage of growth, being most pronounced when it was at peak biomass. At this stage it caused a significant reduction in the biomass, water content, and total nitrogen content of the host plants. 5. Overall, herbivores benefited from, or preferred, shared host plants more than uninfected plants. The aphid benefited from sharing a host with R. minor, showing increased population growth on, and preference for, parasitised plants. The spittle bug also showed a preference for parasitised plants. The grasshopper, Chorthippus brunneus Thunberg (Orthoptera: Acrididae), did not show a preference for, or a performance response to, parasitised hosts, but it consumed significantly more plant material when caged on parasitised plants. 6. These data support the prediction that invertebrate herbivores responded to changes in host plant traits driven by the hemiparasite, and strongly suggest that these indirect interactions could impact on population and community processes within natural communities.  相似文献   

8.
《Acta Oecologica》2007,31(3):419-425
Semi-natural grassland communities are of great interest in conservation because of their high species richness. These communities are being threatened by both land abandonment and nitrogen eutrophication, and their continued existence will depend upon correct management. However, there is a distinct lack of studies of the ecological mechanisms that regulate species diversity and productivity in Mediterranean grasslands. We have conducted a 3-year field experiment in a species-poor grassland in central Italy to investigate the effects of nitrogen fertilization coupled with removal of plant litter and artificial cutting on species diversity and community productivity. Vegetation cutting reduced living biomass but increased species diversity. In fact, cutting had positive effects on the cover of almost all of the annual and biennial species, while it had a negative effect on the dominant perennial grasses Brachypodium rupestre and Dactylis glomerata. Litter removal had similar effects to cutting, although it was far less effective in increasing species diversity. In contrast, nitrogen enrichment strongly increased the living biomass while maintaining very low species diversity. Our results have indicated that semi-natural Mediterranean grasslands need specific management regimes for maintenance and restoration of species diversity. In the management of these grasslands, attention should be paid to the potential threat from nitrogen enrichment, especially when coupled with land abandonment.  相似文献   

9.
Question: What is the impact of the presence of Rhinanthus minor on forb abundance in newly established swards? Location: Wetherby, West Yorkshire, UK (53°55’N, 1°22’W). Method: A standard meadow mix containing six forbs and six grasses was sown on an ex‐arable field and immediately over‐sown using a randomised plot design with three densities of Rhinanthus minor (0, 600, and 1000 seeds per m2). Above‐ground biomass was analysed over a period of three years, while detailed assessments of sward composition were performed during the first two years. Results: Values of grass biomass were reduced in the presence of Rhinanthus, especially at the higher sowing density. The ratio of grass: forb biomass was also lower in association with Rhinanthus, but only at the higher sowing density. The presence of Rhinanthus had no effect on species number or diversity, which decreased between years regardless of treatment. Conclusions: Although not tested in a multi‐site experiment, the benefit of introducing Rhinanthus into newly established swards to promote forb abundance was determined. The efficacy of Rhinanthus presence is likely to depend on whether species not susceptible to the effects of parasitism are present.  相似文献   

10.
Using prairie biomass as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. To date, assessments of the feasibility of using prairies for bioenergy production have focused on marginal areas with low yield potential. Growing prairies on more fertile soil or with moderate levels of fertilization may be an effective means of increasing yields, but increased fertility often reduces plant community diversity. At a fertile site in central Iowa with high production potential, we tested the hypothesis that nitrogen fertilization would increase aboveground biomass production but would decrease diversity of prairies sown and managed for bioenergy production. Over a 3 year period (years 2–4 after seeding), we measured aboveground biomass after plant senescence and species and functional‐group diversity in June and August for multispecies mixtures of prairie plants that received no fertilizer or 84 kg N ha?1 year?1. We found that nitrogen fertilization increased aboveground biomass production, but with or without fertilization, the prairies produced a substantial amount of biomass: averaging (±SE) 12.2 ± 1.3 and 9.1 ± 1.0 Mg ha?1 in fertilized and unfertilized prairies, respectively. Unfertilized prairies had higher species diversity in June, whereas fertilized prairies had higher species diversity in August at the end of the study period. Functional‐group diversity was almost always higher in fertilized prairies. Composition of unfertilized prairies was characterized by native C4 grasses and legumes, whereas fertilized prairies were characterized by native C3 grasses and forbs. Although most research has found that nitrogen fertilization reduces prairie diversity, our results indicate that early‐spring nitrogen fertilization, when used with a postsenescence annual harvest, may increase prairie diversity. Managing prairies for bioenergy production, including the judicious use of fertilization, may be an effective means of increasing the amount of saleable products from managed lands while potentially increasing plant diversity.  相似文献   

11.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

12.
The effects of phosphorus supply on the outcome of interactions between the hemiparasitic angiosperm Rhinanthus minor L. with its host species Lolium perenne L. were investigated in a glasshouse experiment. Host plants were grown in 3-l pots in the presence and absence of R. minor at limiting (0.13 mm P) and optimal (0.65 mm P) concentrations of phosphorus for the growth of the host species. Phosphorus was supplied at 2-day intervals in the form of half-strength Long Ashton nitrate-based solution with phosphorus concentrations adjusted accordingly. Parasitism by R. minor significantly suppressed host growth, with final biomass losses ranging between 32% and 44%. Phosphorus supply had a marked impact on the outcome of the host-parasite interaction. By the end of the growing period, parasite biomass at 0.65 mm P was 90% lower than that achieved at 0.13 mm P. In contrast, host biomass at 0.65 mm P was 74% higher than achieved at 0.13 mm P, indicting that the negative impact of parasitism on the host species was reduced when phosphorus supply was increased. The effects of phosphorus on the host-parasite association appeared to be mediated by changes in both the morphological characteristics of the host roots and the relative sink strengths of the host and parasite. Received: 29 May 1999 / Accepted: 20 December 1999  相似文献   

13.
Question: What is the value of using Rhinanthus minor in grassland restoration and can restrictions on its establishment be overcome? Location: England (United Kingdom). Methods: Two experiments were established to determine the efficacy of inoculating R. minor on a suite of four agriculturally improved grasslands and the efficacy of using R. minor in grassland restoration. In Experiment 1, the effect of herbicide gap creation on the establishment and persistence of R. minor in grasslands ranging in productivity was investigated with respect to sward management. In Exp. 2, R. minor was sown at 1000 seeds/m2 in conjunction with a standard meadow mix over a randomized plot design into Lolium perenne grassland of moderate productivity. The treatment of scarification was investigated as a treatment to promote R. minor. Results: Gap size had a significant role in the establishment and performance of R. minor, especially the 30 cm diameter gaps (Exp. 1). However, R. minor failed to establish long‐term persistent populations in all of the agriculturally improved grasslands. In Exp. 2, establishment of R. minor was increased by scarification and its presence was associated with a significant increase in Shannon diversity and the number of sown and unsown species. Values of grass above‐ground biomass were significantly lower in plots sown with R. minor, but values of total above‐ground biomass (including R. minor) and forb biomass (not including R. minor) were not affected. Conclusions: The value of introducing R. minor into species‐poor grassland to increase diversity has been demonstrated, but successful establishment was dependent on grassland type. The scope for using R. minor in grassland restoration schemes is therefore conditional, although establishment can be enhanced through disturbance such as sward scarification.  相似文献   

14.
Wood betony, Orobanchaceae (Pedicularis canadensis) and bastard toadflax, Santalaceae (Comandra umbellata) are two root‐hemiparasitic plant species found in tallgrass prairie communities. Natural resource managers are interested in utilizing these species as “pseudograzers” in grasslands to reduce competitively dominant grasses and thereby increase ecological diversity and quality in prairie restorations and urban plantings. We performed an observational field study at 5 tallgrass prairie sites to investigate the association of hemiparasite abundance with metrics of phylogenetic and ecological diversity, as well as floristic quality. Although no reduction in C4 grasses was detected, there was a significant association between hemiparasite abundance and increased floristic quality at all 5 sites. Hemiparasite abundance and species richness were positively correlated at one restoration site. In a greenhouse mesocosm experiment, we investigated response to parasitism by P. canadensis in 6 species representing different plant functional groups of the tallgrass prairie. The annual legume partridge pea, Fabaceae (Chamaecrista fasciculata) had the greatest significant dry biomass reduction among 6 host species, but the C4 grass big bluestem, Poaceae (Andropogon gerardii) had significantly greater aboveground biomass when grown with the hemiparasite. Overall, host species biomass as a total community was significantly reduced in mesocosms, consistent with other investigations that demonstrate influence on community structure by hemiparasitic plant species. Although hemiparasites were not acting as pseudograzers, they have the potential to influence community structure in grassland restorations and remnants.  相似文献   

15.
The diversity of epiflora and fauna associated with a dominant turf-forming alga was examined in intertidal communities on the central Oregon coast. Epiphytes associated with the red alga, Rhodomelalarix (Turner) C. Agardh, were examined by surveying intertidal areas for the presence of epiphytes, and by following changes in epiphyte cover in marked quadrats of R. larix. The alga is host for at least 17 species of sessile plants and animals. To determine the role of some of the larger epiphytes in the community, Rhodomela plants were marked and monitored and herbivore feeding was examined. Data suggest that epiphytes decrease the growth rate of their host, increase the probability of axis breakage and decrease reproductive output. Epiphytes provide food for littorine snails and gammarid amphipods that live in the beds of the plant. Amphipods were found to decrease epiphyte cover on R. larix in laboratory tanks, suggesting that these herbivores may have beneficial effects on the host plant.  相似文献   

16.
不同干扰对黄土区典型草原物种多样性和生物量的影响   总被引:3,自引:0,他引:3  
对黄土区典型草原进行封育+施肥(EF)、封育+火烧(EB)、封育(E)和放牧(G)处理,实地调查分析群落盖度、高度、密度、地上现存量和物种多样性,以研究不同干扰对黄土区典型草原群落物种多样性和生物量的影响.结果表明:在4种干扰类型中,施肥+封育草地群落盖度和地上生物量最高,且优势度指数最高,这与禾本科草占优势地位有关,群落均匀度指数和多样性指数最低,符合“生态位理论”;放牧地群落高度、盖度、密度和地上现存量最低,群落丰富度指数和多样性指数最高,支持“中度干扰理论”;封育地密度和均匀度指数最高;具体表现为:4种干扰类型地上生物量的变化趋势为封育+施肥>封育+火烧>封育>放牧;说明长时间的封育对草地是一种严重干扰.群落丰富度指数(R和Ma)的排列顺序为放牧>封育+施肥>封育+火烧>封育,群落物种多样性指数(H'和D)的排列顺序为放牧>封育>封育+火烧>封育+施肥,优势度指数与多样性指数相反,群落均匀度指数(Jsw和Ea)的排列顺序为封育>放牧>封育+火烧>封育+施肥.不同干扰样地群落生产力与Shannon-Wiener和Simpson 多样性指数间呈负相关关系,这个结论可以用地上/地下竞争的相互作用来解释.  相似文献   

17.
The effect of cultivation of mycorrhizal and non-mycorrhizal plants and mineral fertilization on the arbuscular mycorrhizal fungal (AMF) community structure of maize (Zea mays L.) plants was studied. Soil samples were collected from two field experiments treated for 5 years with three fertilization systems (Control – no fertilization; Mineral – NPK fertilization; and Organic – Farmyard manure fertilization). Soil samples containing soil and root fragments of rapeseed (Brassica napus L., non-mycorrhizal plant) and wheat (Triticum aestivum L., mycorrhizal plant) collected from the field plots were used as native microbial inoculum sources to maize plants. Maize plants were sown in pots containing these inoculum sources for four months under glasshouse conditions. Colonization of wheat roots by AMF, AMF community structure, AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize were investigated. Sixteen AMF species were identified from rhizosphere soil samples as different species of genera Acaulospora, Claroideoglomus, Dentiscutata, Funneliformis, Gigaspora, Quatunica, Racocetra, and Rhizoglomus. Maize plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral NPK-fertilizer or non-fertilized. The results also showed that inoculum from non-mycorrhizal plants combined with mineral fertilization decreased AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize. Our findings suggest that non-mycorrhizal plants, such as B. napus, can negatively affect the presence and the effects of soil inoculation on maize growth. Also, our results highlight the importance of considering the long-term effect of rapeseed cultivation system on the reduction of population sizes of infective AMF, and its effect on succeeding annual crops.  相似文献   

18.
Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.  相似文献   

19.
《Acta Oecologica》2004,25(1-2):61-65
A desirable property of a diversity index is the so-called sum property. For a diversity index that possesses the sum property, such as species richness N, Shannon’s entropy H or Simpson’s index 1/D, the community diversity is decomposable into species-level patterns and the sum of single species diversities gives the pooled diversity of the species collection. In this paper, parametric diversity of type α is used to quantify how fertilizer applied to soil affects the relative contribution of species endemic or preferential to serpentine soils within a garigue plant community in Tuscany (Italy). Soil fertilizer significantly improved the biomass production of the original species pool without any significant colonization by alien species. However, the major biomass increments were experienced by species that are not exclusive to serpentine soils. In this view, the reduced abundance of species endemic or preferential to serpentine soils can be interpreted as a loss of ‘ecological quality’ of the analyzed community.  相似文献   

20.
Questions: How do arbuscular mycorrhiza and earthworms affect the structure and diversity of a ruderal plant community? Is the establishment success of newcomer plants enhanced by these soil organisms and their interactions? Methods: We grew a native ruderal plant community composed of different functional groups (grasses, legumes and forbs) in the presence and absence of arbuscular mycorrhizal fungi (AMF) and endogeic earthworms in mesocosms. We introduced seeds of five, mainly exotic, plant species from the same functional groups after a disturbance simulating mowing. The effects of the soil organisms on the native ruderal plant community and seedling establishment of the newcomer plants were assessed. Results: After disturbance, the total above‐ground regrowth of the native plant community was not affected by the soil organisms. However, AMF increased plant diversity and shoot biomass of forbs, but decreased shoot biomass of grasses of the native plant community. Earthworms led to a reduction in total root biomass. Establishment of the introduced newcomer plants increased in the presence of AMF and earthworms. Especially, seedling establishment of the introduced non‐native legume Lupinus polyphyllus and the native forb Plantago lanceolata was promoted in the presence of AMF and earthworms, respectively. The endogeic earthworms gained more weight in the presence of AMF and led to increased extraradical AMF hyphal length in soil. However, earthworms did not seem to modify the effect of AMF on the plant community. Conclusion: The present study shows the importance of mutualistic soil organisms in mediating the establishment success of newcomer plants in a native plant community. Mutualistic soil organisms lead to changes in the structure and diversity of the native plant community and might promote newcomer plants, including exotic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号