首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Root hemiparasitic plants take up resources from the roots of neighbouring plants, which they use for fuelling their own growth. While taking up resources from the hosts below-ground, they may simultaneously compete with the hosts for sunlight. Suppression caused by the parasitism could result in openings in the vegetation structure and increased mortality levels. On the other hand, the root hemiparasites may also be constrained by the hosts, restricting the parasites to a limited number of locations within a community. These vegetation alterations and location restrictions can be referred to as spatial signatures of the root hemiparasites. In order to search for such spatial signatures, we investigated a population of a predominant Acacia species in Australia co-occurring with established root hemiparasitic shrubs, using intensity estimates of the Acacia and dead shrubs to be indicators of parasite populations. We find evidence that the root hemiparasitic shrubs, like herbaceous root hemiparasites, prefer growing at distances from neighbouring plants that fulfil resource requirements both below-ground and above-ground. Assuming that root hemiparasites are limited by their hosts, we present an optimal host density and distance to host hypothesis (‘Goldilocks hypothesis’) to account for such a vegetation pattern. Although mortality appeared to primarily result from intraspecific competition and shoot parasitism, the root parasitism could explain some of the mortality in open areas. It is likely that both processes occur simultaneously. In spite of differing annual and perennial life strategies among root hemiparasites, root parasitism across systems may follow these two general processes in the formation of vegetation patterns.  相似文献   

2.
Hemiparasitic plants display a unique strategy of resource acquisition combining parasitism of other species and own photosynthetic activity. Despite the active photoassimilation and green habit, they acquire substantial amount of carbon from their hosts. The organic carbon transfer has a crucial influence on the nature of the interaction between hemiparasites and their hosts which can oscillate between parasitism and competition for light. In this minireview, we summarize methodical approaches and results of various studies dealing with carbon budget of hemiparasites and the ecological implications of carbon heterotrophy in hemiparasites.Key words: haustorium, heterotrophy, parasitic plant, mistletoe, Rhinanthus, Striga, δ13CHemiparasitic plants withdraw resources from the vascular system of their hosts through a specialized transfer organ called haustorium.1 Hemiparasites attack the host''s xylem, in contrast to the holoparasites that infect both phloem and xylem, and as a consequence, hemiparasitic plants have access to water and mineral nutrients but little carbon.1 Due to their reduced or non-existing root networks, hemiparasitic plants acquire virtually all mineral nutrients and water from the host while organic carbon is provided, at least in part, by their own photosynthetic activity.2,3 This is in contrast to holoparasitic plants which rely on the host for the supply of both organic and inorganic nutrients. The location of the attachment to the host and the degree of host dependency represent the most important characters defining the three basic functional types within hemiparasitic plants. Root hemiparasites attack host roots but their above-ground appearance is usually not substantially different from that of a non-parasitic plant. This group can be further divided in two—facultative and obligate hemiparasites consisting of plants that are able (at least sometimes) or unable to complete their life cycle without an attachment to the host respectively. Stem hemiparasites are attached to the host stem (usually trunk or branches) and are all obligate parasites, unable to survive without a host.Hemiparasitic plants have an ambiguous relationship with their hosts which, on the one hand, represent exclusive sources of inorganic nutrients but on the other hand, the co-occurrence of these host plants in the hemiparasite vicinity imposes competition for light. The nature and intensity of this competitive relationship varies across different groups and species of hemiparasites. The ability of hemiparasites to acquire organic carbon (largely in the form of xylem-mobile organic and amino acids) is certainly the key factor affecting this interaction since hemiparasites that are capable of efficient organic carbon abstraction should be minimally affected by shading from their host. The fact that hemiparasites can exhibit substantial carbon heterotrophy is now supported by a large number of studies, although a traditional point of view on hemiparasites that highlights the importance of inorganic resources (mainly nitrogen) acquisition is still prevailing. Therefore, we decided to summarize available information on hemiparasite heterotrophy, outline techniques for assessing the proportion of heterotrophy and estimating the overall carbon budget, and discuss possible implications of this phenomenon on hemiparasite ecology.  相似文献   

3.
Root hemiparasitic plants and their host plants interact directly, through parasitism, as well as indirectly, through scramble competition for resources. To understand the population dynamics and community ecology of root hemiparasitic plants and their hosts, models of resource-based competition have been extended to include resource parasitism. Parasitism provides a mechanism for parasitic plants to overcome deficits in their ability to compete for soil resources. The interaction ranges from competitive to exploiter-victim, depending on whether the benefits of parasitism overshadow the costs of competition. These models predict that as productivity in the system increases, parasitic plants should become more abundant. In diverse host communities, differences in the impact that parasites have on their hosts and the benefits that they receive from parasitizing different hosts may lead to nontransitive competitive relationships and a sort of apparent competition. The possible dynamics include paper-rock-scissors oscillations and indirect mutualisms between parasitic plants and their hosts that allow them to form coalitions that can exclude competitive dominants.  相似文献   

4.
? Heterotrophic acquisition of substantial amounts of organic carbon by hemiparasitic plants was clearly demonstrated by numerous studies. Many hemiparasites are, however, also limited by competition for light preventing the establishment of their populations on highly productive sites. ? In a growth-chamber experiment, we investigated the effects of competition for light, simulated by shading, on growth and heterotrophic carbon acquisition by the hemiparasite Rhinanthus alectorolophus attached to C(3) and C(4) hosts using analyses of biomass production and stable isotopes of carbon. ? Shading had a detrimental effect on biomass production and vertical growth of the hemiparasites shaded from when they were seedlings, while shading imposed later caused only a moderate decrease of biomass production and had no effect on the height. Moreover, shading increased the proportion of host-derived carbon in hemiparasite biomass (up to 50% in shaded seedlings). ? These results demonstrate that host-derived carbon can play a crucial role in carbon budget of hemiparasites, especially if they grow in a productive environment with intense competition for light. The heterotrophic carbon acquisition can allow hemiparasite establishment in communities of moderate productivity, helping well-attached hemiparasites to escape from the critical seedling stage.  相似文献   

5.
  • Increasing nitrogen deposition and more frequent drought events are likely to change plant interactions in natural grasslands. Both factors may also influence the interactions between hemiparasitic plants, regarded as keystone species in many grasslands, and their host species.
  • We grew a combination of three suitable hosts, a grass, a forb and a legume, with and without the hemiparasite Rhinanthus alectorolophus at three levels of nitrogen (N) and two levels of water availability in a factorial design.
  • Biomass of the hemiparasite and host community increased with N level and was reduced by drought to a similar degree. Larger plants in fertilised pots started to wilt earlier, and the presence of a hemiparasite further increased drought sensitivity. The hemiparasite strongly reduced biomass of the host community and overall productivity, and affected the competitive balance among host plants because it particularly reduced biomass of the dominant grass. These effects were the opposite of those of high N. The hemiparasite increased the root mass fraction of the hosts at all levels of N and water availability, indicating that the effect of the hemiparasite on the hosts was mainly due to loss of belowground resources.
  • Our results indicate that hemiparasites will not always respond more strongly to increased N availability and drought than autotrophic plants, and that hemiparasites can have similarly strong effects on grassland communities as soil fertility and drought. By preferentially attacking dominant species the hemiparasites might alleviate the negative effects of nutrient enrichment on grassland diversity.
  相似文献   

6.
1.  Parasitic plants affect the growth, reproduction and metabolism of their hosts and may also influence the outcome of competitive interactions between host species and, consequently, the structure of entire host communities.
2.  We investigate the effect of the root hemiparasitic plant Rhinanthus minor on plant community dynamics using a spatial theoretical model. The model is parameterized with data from pairwise interaction experiments under two nutrient levels between the hemiparasite and three grass species ( Cynosurus cristatus , Festuca rubra and Phleum bertolonii ) and three forb species ( Leucanthemum vulgare , Plantago lanceolata and Ranunculus acris ).
3.  Relative interaction coefficients were intransitive, with the dynamics of the system conforming to a rock–paper–scissors game. Stable deterministic dynamics emerge from parameters obtained under low-nutrient conditions. Under high-nutrient conditions, the dynamics are unstable, but are stabilized in spatially explicit models. The outcomes are sensitive to initial spatial pattern and frequency.
4.   Synthesis . This study supports the idea that hemiparasite populations may form 'shifting clouds' in natural populations and explains seemingly unpredictable shifts in host community structure following introduction of hemiparasites. Management of plant communities using hemiparasites needs to take these complex dynamics into account.  相似文献   

7.
Plant parasitism and herbivory are common phenomena in natural grasslands, where they may significantly affect competition between plant species. However, only few studies have simultaneously examined these two processes. We investigated whether the root hemiparasite Odontites litoralis ssp. litoralis affects the outcome of competition between two clonal graminoids, the endangered Puccinellia phryganodes and the common species Agrostis stolonifera, and whether simulated grazing affects the interaction among these three species. This study system simulates the community of early successional stages of the Bothnian Bay salt marsh meadows, which are intensively grazed by greylag geese (Anser anser). We conducted a factorial greenhouse experiment to study the effects of interspecific competition (one or two host species present), hemiparasitic infection (hemiparasite present or not), and simulated grazing (host clipped or not) on Puccinellia and Agrostis. Puccinellia was clearly an inferior competitor to Agrostis, whereas the two species did not differ as hosts for the hemiparasite. Infection by the hemiparasite reduced the aboveground biomass of Puccinellia and Agrostis by 59% and 45%, respectively. Competition with Agrostis decreased the biomass of parasitised Puccinellia by 36% and that of non-parasitised Puccinellia by 56%. Parasitism thus seemed to benefit Puccinellia indirectly by decreasing the relative competitive advantage of Agrostis. Moreover, parasitism increased the relative contribution of Puccinellia to the total aboveground host plant biomass. Simulated grazing decreased the aboveground biomass of Agrostis significantly more than that of Puccinellia and thus increased the competitive ability of Puccinellia. Simulated grazing of the two host species did not affect the performance of Odontites. These results suggest that both hemiparasitic plants and herbivory may play a significant role in the maintenance of plant species diversity by promoting competitively inferior species.  相似文献   

8.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

9.

Background and Aims

Facultative root hemiparasitic plants generally have a wide host range, but in most cases show an obvious host preference. The reasons for the marked difference in growth performance of hemiparasites when attached to different hosts are not fully understood. In this study, the hypothesis was tested that hemiparasites showing a preference for different hosts have different nutrient requirements.

Methods

Two facultative root hemiparasitic Pedicularis species (P. rex and P. tricolor) with a different host dependency and preference were used to test their responses to inorganic solutes. The effects of nitrogen, phosphorus and potassium on growth of the hemiparasitic plants not attached to a host were determined, using an orthogonal design in pot cultivation under greenhouse conditions. Variables including biomass, shoot nutrient concentration, root:shoot (R:S) ratios and the number of haustoria were measured.

Key Results

As in autotrophic plants, nutrient deficiency reduced dry weight (DW) and nutrient concentrations in the root hemiparasites. Nitrogen and phosphorus significantly influenced growth of both Pedicularis species, while potassium availability influenced only shoot DW of P. rex. Nitrogen had far more effect on growth of P. rex than on P. tricolor, while phosphorus deficiency caused more marked growth depression in P. tricolor than in P. rex. Pedicularis rex grew faster than P. tricolor in a range of nutrient supplies. Different patterns of biomass allocation between the two Pedicularis species were observed. While P. rex invested more into roots (particularly fine rootlets) than P. tricolor, the number of haustoria produced by P. rex was relatively much lower than that produced by P. tricolor, which had a much smaller root system.

Conclusions

The two Pedicularis species differ in nutrient requirements and biomass allocation. Distinct interspecific traits in growth and nutrient requirements can be driving forces for the differential interactions between hemiparasites and their hosts.  相似文献   

10.
Arising from annual variation in parasitic plant population densities, substantial yearly changes may occur in the parasitic load of an individual perennial host. We conducted two two-year greenhouse pot experiments to examine the effects of varying intensities and duration of infection by an annual root hemiparasitic plant. Rhinanthus serotinus, on the growth and reproduction of its perennial host grass. Agrostis capillaris. In the first experiment, one host plant was growing either alone or under a load of 1 or 3 root hemiparasitic plants for one growing season, and during the next season all hosts continued their life free of hemiparasites. In the second experiment, the host plants either grew alone or were parasitised by 1 or 2 root hemiparasitic plants either during the first growing season only or during two successive seasons (the parasitic load being the same in the two seasons). In both experiments, the root hemiparasites markedly reduced the growth and reproduction of their perennial hosts. In the first experiment, the negative effects of parasites on host performance increased with the increase in intensity of parasitic infection from one to three parasites. The harmful effects of hemiparasitim were carried over to the following season; hosts parasitised during the previous season with one or three parasites produced significantly less biomass than those without parasites. In addition, hosts parasitised by three parasites during the first season produced significantly less panicles in the second season than those parasitised by one parasite and those without parasites. The second experiment showed that the production of biomass of A. capillaris during the second season was, but the production of panicles was not affected by the duration of parasitic infection. In addition, in this experiment, the second season biomass of A. capillaris depended on the intensity of infection (1 vs 2 parasites), but the production of panicles was unaffected by the number of parasites.  相似文献   

11.
Hemiparasitic plants gain virtually all mineral nutrients and water from their host plant whilst organic carbon is provided, at least in part, by their own photosynthetic activity, although their rates of assimilation are substantially lower than that found in non-parasitic plants. Hence, hemiparasites must gain at least some of their organic carbon heterotrophically from the host plant. Despite this, heterotrophic carbon gain by root hemiparasites has been investigated only for a few genera. We investigated heterotrophic carbon gain by two root hemiparasites, Rhinanthus minor L. and Euphrasia rostkoviana Hayne (Orobanchaceae), using natural abundance stable isotope (δ13C) profiles of both parasites attached to C3 (wheat) and C4 (maize) hosts coupled to a linear two-source isotope-mixing model to estimate the percentage of carbon in the parasite that was derived from the host. Both R. minor and E. rostkoviana attached to maize hosts were significantly more enriched in 13C than those attached to wheat hosts with R. minor becoming more enriched in 13C than E. rostkoviana. The natural abundance 13C profiles of both parasites were not significantly different from their wheat hosts, but were less enriched in 13C than maize hosts. Using a linear two-source isotope-mixing model, we estimated that R. minor and E. rostkoviana adult plants derive c. 50 and 25% of their carbon from their hosts, respectively. In light of these results, we hypothesise that repeatedly observed negative effect of competition for light on hemiparasites acts predominantly in early ontogenetic stages when parasites grow unattached or the abstraction of host nutrients is less effective.  相似文献   

12.
Hemiparasitic plants can substantially change plant community structure; the drainage of host resources has a direct negative effect on host biomass and, as a consequence, promotes non-host biomass production (parasitism pathway); on the other hand, hemiparasitic litter inputs can enhance nutrient cycling which may have an indirect positive effect on both host and non-host biomass production (litter pathway). We evaluated the net effect of both pathways on total shoot biomass (with and without the hemiparasite) and shoot biomass of graminoids, forbs and ericaceous shrubs using a removal experiment in three sites infested with the annual Rhinanthus angustifolius, and three sites infested with the biennial Pedicularis sylvatica. We addressed the potential importance of litter effects by determination of litter quantity and quality, as well as modeling N release during decomposition. In the second year after removing the hemiparasites, total plant biomass at Rhinanthus sites was 24 % higher in weeded plots than in control plots, while weeding had no significant effect at Pedicularis sites. The increase in total biomass following Rhinanthus removal was mainly due to a higher biomass of graminoids. The amount of litter produced by Rhinanthus was only half of that produced by Pedicularis; N contents were similar. The amount of N in the litter was 9 and 30 % of the amount removed by mowing for Rhinanthus and Pedicularis sites, respectively. Within 2 months, about 45 % of the N in both hemiparasitic litter types was released by decomposition. Our results suggest that in addition to the suppression of host biomass due to parasitism, positive litter feedbacks on host and non-host biomass—via an increase in nutrient availability—also affect plant community structure. We propose that, depending on the particular hemiparasite and/or site conditions, these positive litter feedbacks on shoot biomass can compensate for the negative effect of parasitism.  相似文献   

13.
The performance of root hemiparasites depends strongly on host species identity, but it remains unknown whether there exist general patterns in the quality of species as hosts for hemiparasites and in their sensitivity to parasitism. In a comparative approach, the model root hemiparasites Rhinanthus minor and R. alectorolophus were grown with 25 host species (grasses, forbs, and legumes) at two nutrient levels. Hosts grown without parasites served as a control. Host species identity strongly influenced parasite biomass and other traits, and both parasites grew better with legumes and grasses than with forbs. The biomass of R. alectorolophus was much higher than that of R. minor with all host plants and R. alectorolophus responded much more strongly to higher nutrient availability than R. minor. The performance of the two species of Rhinanthus with individual hosts was strongly correlated, and it was also correlated with that of R. alectorolophus and the related Odontites vulgaris in previous experiments with many of the same hosts, but only weakly with that of the less closely related Melampyrum arvense. The negative effect of R. minor on host biomass was less strong than that of R. alectorolophus, but stronger relative to its own biomass, suggesting that it is more parasitic. The impact of the two parasites on individual hosts did not depend on nutrient level and was correlated. Several legumes and grasses were tolerant of parasitism. While R. minor slightly reduced mean overall productivity, R. alectorolophus increased it with several species, indicating that the loss of host biomass was more than compensated by that of the parasite. The results show that closely related parasites have similar host requirements and correlated negative effects on individual hosts, but that there are also specific interactions between pairs of parasitic plants and their hosts.  相似文献   

14.
We experimentally studied the role of local adaptation and the co-evolutionary relationship between an annual, endangered root hemiparasite Euphrasia rostkoviana and its main host Agrostis capillaris. According to our hypothesis, the existence of local adaptation in hemiparasites should be observable in better hemiparasite performance when attached to A. capillaris hosts originating From Euphrasia populations. After one month of growth, the height and the number of leaves of hemiparasites were not affected by the origin of their hosts. The differences in growth were due to between population effects. The situation remained constant after three months. Hemiparasite biomass was not affected by the origin of the hosts. The percentage of hemiparasites surviving after one. two and three months was not affected by the origin of the hosts although there was a weak tendency towards better survival of hemiparasites with familiar hosts than with unfamiliar hosts. All variables used to measure hemiparasite performance during its complete life-cycle gave only limited support for the local adaptation hypothesis. Nevertheless, the familiar hosts suffered less from parasitism as indicated by their higher biomass after the experiment. This suggests that there may be some interactions between hemiparasites and their hosts based on their spatial population structure and common history as competitors.  相似文献   

15.
李钧敏  董鸣 《生态学报》2011,31(4):1174-1184
寄生植物是生态系统中的特殊类群之一。植物寄生可以驱动生态系统中生物与非生物因子的变化,在生态系统结构与功能中起关键作用。寄生植物可以通过对寄主营养的集聚、改变凋落物的质量与数量、改变根的周转与分泌物格局、改变土壤水势,从而影响土壤理化特性。寄生植物会改变寄主的行为,改变寄主与非寄主植物之间的相互作用,从而影响植物群落的结构、多样性和动态,进而影响植被演替和植被生产力等。寄生植物与寄主均可被消费者取食,可直接或间接地影响生态系统的食草动物,包括草食昆虫等。寄生植物与寄主的其它寄生物存在竞争关系,可以直接或间接地影响寄主的其它寄生植物或病原真菌。寄生植物可以明显地改变土壤地球化学循环,将固有的不可动的成分转变为可利用的营养成分,改变土壤生物群落的结构与功能,从而显著影响地下生物群落。这些表明,植物寄生对生态系统的结构和功能有重要影响。针对特殊的被入侵的植物群落,该地寄生植物可以通过影响入侵植物寄主的生长、繁殖、生物量分配格局,改变土壤的理化特性,促进非寄主的非优势本地植物的生长,从而改变被入侵植物群落结构与多样性,达到生物防治及生态恢复的目的。  相似文献   

16.
Parasitic plants pose a major biotic threat to plant growth and development and lead to losses in crop productivity of billions of USD annually. By comparison with “normal” autotrophic plants, parasitic plants live a heterotrophic lifestyle and rely on water, solutes and to a greater (holoparasitic plants) or lesser extent (hemiparasitic plants) on sugars from other host plants. Most hosts are unable to detect an infestation by plant parasites or unable to fend off these parasitic invaders. However, a few hosts have evolved defense strategies to avoid infestation or protect themselves actively post-attack often leading to full or partial resistance. Here, we review the current state of our understanding of the defense strategies to plant parasitism used by host plants with emphasis on the active molecular resistance mechanisms. Furthermore, we outline the perspectives and the potential of future studies that will be indispensable to develop and breed resistant crops.

Some plants are able to recognize parasitic plants as attacking pathogens and can fend them off by inducing defense responses.

Advances
  • Receptor proteins have been discovered in host plants (i.e. sunflower, tomato, or cowpea) that detect parasitic plants as an invading pathogen and further induce plant immunity and resistance responses in hosts leading to a parasite rejection.
  • Molecular patterns exist in parasitic plants that can be specifically detected by host plant receptors.
  • The host plant receptors require co-receptors and signaling components (i.e. BAK1, SOBIR1, etc.) also known from plant immunity against microbes.
  • Parasitic plants evolved strategies to circumvent and to suppress host plant immunity, i.e. by manipulating host cells with siRNAs or proteins that act as effectors.
  • Similar to the interaction of plants with microbial pathogens, elements of PTI and ETI can be both observed in plant–parasitic plant interactions.
  相似文献   

17.
Host-plants can mediate the interactions between herbivores and their mutualists and also between parasitic plants and their mutualists. The present study reveals how a hemiparasitic plant parasitizing three host species gives rise to three distinct hemiparasite-host neighborhoods which differ in terms of volatile composition and pollinator attractiveness. The study was performed in a population of the mistletoe Tristerix verticillatus infecting three different species of hosts occurring in sympatry within a small area, thus exposing all individuals studied to similar abiotic conditions and pollinator diversity; we assessed the effect of hosts on the hemiparasites’ visual and olfactory cues for pollinator attraction. During the study period, the hemiparasite individuals were flowering but the hosts were past their flowering stage. We collected volatile organic compounds from the hemiparasite and its hosts, measured floral display characteristics and monitored bird and insect visitors to inflorescences of T. verticillatus. We showed that: (1) floral patches did not differ in terms of floral display potentially involved in the attraction of pollinators, (2) hosts and hemiparasites on each host were discriminated as distinct chemical populations in terms of their volatile chemical profiles, (3) insect visitation rates differed between hemiparasites parasitizing different hosts, and (4) volatile compounds from the host and the hemiparasite influenced the visitation of hemiparasite flowers by insects. The study showed that a species regarded as “ornithophilic” by its floral morphology was actually mostly visited by insects that interacted with its sexual organs during their visits and carried its pollen, and that host-specific plant-volatile profiles within the T. verticillatus population were associated with differential attractiveness to pollinating insects.  相似文献   

18.
Wood betony, Orobanchaceae (Pedicularis canadensis) and bastard toadflax, Santalaceae (Comandra umbellata) are two root‐hemiparasitic plant species found in tallgrass prairie communities. Natural resource managers are interested in utilizing these species as “pseudograzers” in grasslands to reduce competitively dominant grasses and thereby increase ecological diversity and quality in prairie restorations and urban plantings. We performed an observational field study at 5 tallgrass prairie sites to investigate the association of hemiparasite abundance with metrics of phylogenetic and ecological diversity, as well as floristic quality. Although no reduction in C4 grasses was detected, there was a significant association between hemiparasite abundance and increased floristic quality at all 5 sites. Hemiparasite abundance and species richness were positively correlated at one restoration site. In a greenhouse mesocosm experiment, we investigated response to parasitism by P. canadensis in 6 species representing different plant functional groups of the tallgrass prairie. The annual legume partridge pea, Fabaceae (Chamaecrista fasciculata) had the greatest significant dry biomass reduction among 6 host species, but the C4 grass big bluestem, Poaceae (Andropogon gerardii) had significantly greater aboveground biomass when grown with the hemiparasite. Overall, host species biomass as a total community was significantly reduced in mesocosms, consistent with other investigations that demonstrate influence on community structure by hemiparasitic plant species. Although hemiparasites were not acting as pseudograzers, they have the potential to influence community structure in grassland restorations and remnants.  相似文献   

19.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

20.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号