首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone.  相似文献   

2.
Vascular endothelial growth factor (VEGF), an angiogenic factor induced by hypoxia, also exerts direct effects on neural tissues. VEGF up‐regulation after hypoxia coincides with expression of its two tyrosine kinase receptors Flt‐1(VEGFR‐1) and Flk‐1 (KDR/VEGFR‐2), which are the key mediators of physiological angiogenesis. We have recently shown that hypoxic‐preconditioning (PC) leading to tolerance to hypoxia–ischemia in neonatal piglet brain resulted in increased expression of VEGF. In this study, we used a hypoxic‐preconditioning model of ischemic tolerance to analyze the expression and cellular distribution of VEGF receptors and phosphorylation of cAMP‐response element‐binding protein (CREB) in newborn piglet brain. The response of Flt‐1 and Flk‐1 mRNA to PC alone was biphasic with peaks early (6 h) and late (1 week) after PC. The mRNA expression of Flt‐1 and Flk‐1 in piglets preconditioned 24 h prior to hypoxia–ischemia was significantly higher than non‐preconditioned piglets and remained up‐regulated up to 7 days. Furthermore, PC prior to hypoxia–ischemia significantly increased the protein levels of Flt‐1 and Flk‐1 compared with hypoxia–ischemia in a time‐dependent manner. Double‐immunolabeling indicated that both Flt‐1 and Flk‐1 are expressed in neurons and endothelial cells with a similar time course of expression following PC and that PC leads to the growth of new vessels. Finally, our data demonstrate that PC significantly phosphorylated and activated cAMP‐response element‐binding protein in nucleus. These results suggest that mechanism(s) initiated by PC can induce VEGF receptor up‐regulation in newborn brain and that VEGF–VEGF receptor‐coupled signal transduction pathways could contribute to the establishment of tolerance following hypoxia–ischemia.  相似文献   

3.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.  相似文献   

4.
Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.  相似文献   

5.
The development of blood vessels (angiogenesis) is critical throughout embryogenesis and in some normal postnatal physiological processes. Pathological angiogenesis has a pivotal role in sustaining tumour growth and chronic inflammation. Vascular endothelial growth factor-B (VEGF-B) is a member of the VEGF family of growth factors that regulate blood vessel and lymphatic angiogenesis. VEGF-B is closely related to VEGF-A and placenta growth factor (PlGF), but unlike VEGF-A, which binds to two receptor tyrosine kinases VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), VEGF-B and PlGF bind to VEGFR-1 and not VEGFR-2. There is growing evidence of a role for VEGF-B in physiological and pathological blood vessel angiogenesis. VEGF-B may provide novel therapeutic strategies for the treatment of vascular disease and be a potential therapeutic target in aberrant vessel formation. To help understand at the molecular level the differential receptor binding profile of the VEGF family of growth factors we have determined the crystal structure of human VEGF-B(10-108) at 2.48 Angstroms resolution. The overall structure is very similar to that of the previously determined cysteine-knot motif growth factors: VEGF-A, PlGF and platelet-derived growth factor-B (PDGF-B). We also present a predicted model for the association of VEGF-B with the second domain of its receptor, VEGFR-1. Based on this interaction and the present structural data of the native protein, we have identified several putative residues that could play an important role in receptor recognition and specificity.  相似文献   

6.
Flk2/Flt3 is a recently identified receptor tyrosine kinase expressed in brain, placenta, testis, and primitive hematopoietic cells. The mitogenic signalling potential and biochemical properties of Flk2/Flt3 have been analyzed by using a chimeric receptor composed of the extracellular domain of the human colony-stimulating factor 1 receptor and the transmembrane and cytoplasmic domains of murine Flk2/Flt3. We demonstrate that colony-stimulating factor 1 stimulation of the Flk2/Flt3 kinase in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a full proliferative response in the absence of other growth factors. In transfected interleukin 3 (IL-3)-dependent Ba/F3 lymphoid cells, activation of the chimeric receptor can abrogate IL-3 requirement and sustain long-term proliferation. We show that phospholipase C-gamma 1, Ras GTPase-activating protein, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, Vav, Fyn, and Src are components of the Flk2/Flt3 signal transduction pathway. In addition, we demonstrate that phospholipase C-gamma 1, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, and Src family tyrosine kinases, but not Ras GTPase-activating protein, Vav, or Nck, physically associate with the Flk2/Flt3 cytoplasmic domain. Cell-type-specific differences in tyrosine phosphorylation of p85 and Shc are observed. A comparative analysis of the Flk2/Flt3 signal cascade with those of the endogenous platelet-derived growth factor and IL-3 receptors indicates that Flk2/Flt3 displays specific substrate preferences. Furthermore, tyrosine phosphorylation of p85 and Shc is similarly affected by totally different growth factors in the same cellular background.  相似文献   

7.
Flt1 and Flk1 are receptor tyrosine kinases for vascular endothelial growth factor-A which play a crucial role in physiological and pathological angiogenesis. To study genetic interaction between the Flt1 and Flk1 genes, we crossed between Flt1 and Flk1 heterozygous (Flt1(+/-) and Flk1(+/-)) mice. We found that Flt1; Flk1 double heterozygous (Flt1(+/-); Flk1(+/-)) mice showed enlarged eyes similar to the buphthalmia detected in human congenital glaucoma with elevation of intraocular pressure (IOP). Actually, IOP was elevated in Flt1(+/-); Flk1(+/-) mice and also in Flt1 or Flk1 single heterozygous mice. However, none of these mutants showed hallmarks of glaucoma such as ganglion cell death and excavation of optic disc. To clarify the pathological causes for enlarged eyes and elevated IOP, we investigate the mice from matings between Flt1(+/-) and Flk1(+/-) mice. Flt1(+/-) mice showed enlarged Schlemm's canal and disordered collagen fibers in the sclera, whereas Flk1(+/-) mice showed atrophied choriocapillaris in the choroid. These tissues are a part of the main outflow and alternative uveoscleral outflow pathway of the aqueous humor, suggesting that these pathological changes found in Flt1(+/-) and Flk1(+/-) mice are associated with the buphthalmia in Flt1(+/-); Flk1(+/-) mice.  相似文献   

8.
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and is involved in pathological angiogenesis associated with chronic liver diseases. However, the precise mechanisms underlying PlGF signalling contributing to liver fibrosis and angiogenesis remain largely unexplored. This study aimed to assess the effect of reducing PlGF expression using small interfering RNA (siRNA) on experimental liver fibrosis and angiogenesis, and to elucidate the underlying molecular mechanisms. Fibrosis was induced in mice by carbon tetrachloride (CCl4) for 8 weeks, and mice were treated with PlGF siRNA or non‐targeting control siRNA starting two weeks after initiating CCl4 injections. The results showed that PlGF was highly expressed in cirrhotic human and mice livers; which mainly distributed in activated hepatic stellate cells (HSCs). PlGF silencing robustly reduced liver inflammation, fibrosis, intrahepatic macrophage recruitment, and inhibited the activation of HSCs in vivo. Moreover, PlGF siRNA‐treated fibrotic mice showed diminished hepatic microvessel density and angiogenic factors, such as hypoxia‐inducible factor‐1α (HIF‐1α), VEGF and VEGF receptor‐1. Moreover, down‐regulation of PlGF with siRNA in HSCs inhibited the activation and proliferation of HSCs. Mechanistically, overexpression of PlGF in activated HSCs was induced by hypoxia dependent on HIF‐1α, and PlGF induces HSC activation and proliferation via activation the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathways. These findings indicate that PlGF plays an important role in liver fibrosis‐associated angiogenesis and that blockage of PlGF could be an effective strategy for chronic liver disease.  相似文献   

9.
Abstract

Vascular endothelial growth factor (VEGF) and its specific receptors, FLt1/fms, Flk1/KDR and FLt4, play important roles in vasculogenesis, and physiological and pathological angiogenesis. Whether angiogenic growth factors are involved in regulating angiogenic processes during the postpartum involution period (PP) of the rat uterus is unknown. We used immunohistochemistry to analyze the expression levels of VEGF, the fms-like tyrosine kinase 1 (FLt1/fms), the kinase insert domain-containing region 1 (Flk1/KDR), Fms-related tyrosine kinase 4 (FLt4) and vascular endothelial growth inhibitor (VEGI) in the rat uterus during the days 1, 3, 5, 10 and 15 of the PP to determine the temporal and spatial expressions of VEGF and its receptors during the PP. Throughout the PP, cytoplasmic and membrane staining of VEGI, VEGF and their receptors were observed in the lumens, crypts and glandular epithelial cells as well as in connective tissue and vascular endothelial and smooth muscle cells in the endometrium. We found that the intensity of the immunoreactions in the endometrium varied with the morphological changes that occurred during involution. Immunoreactions for VEGI, VEGF and their receptor, Flk1/KDR, in the luminal epithelial cells were stronger than those in the glandular epithelial and stromal cells, particularly during PP 1, 3 and 5, which suggests that these peptides may contribute to re-epithelialization of the endometrium. On the other hand, Flt1/fms immunoreactivity was strong mainly in the stromal cells during the PP. The presence of VEGF and its receptors (FLt1/fms, Flk1/KDR, FLt4) in the stromal cells and blood vessels during the PP suggests that they may contribute to regulating stromal repair and angiogenesis in the involuting uterus of the rat.  相似文献   

10.
This study was initiated to identify signaling proteins used by the receptors for vascular endothelial cell growth factor KDR/Flk1, and Flt1. Two-hybrid cloning and immunoprecipitation from human umbilical vein endothelial cells (HUVEC) showed that KDR binds to and promotes the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Neither placental growth factor, which activates Flt1, epidermal growth factor (EGF), or fibroblast growth factor (FGF) induced tyrosine phosphorylation of PLCgamma, indicating that KDR is uniquely important to PLCgamma activation in HUVEC. By signaling through KDR, VEGF promoted the tyrosine phosphorylation of focal adhesion kinase, induced activation of Akt, protein kinase Cepsilon (PKCepsilon), mitogen-activated protein kinase (MAPK), and promoted thymidine incorporation into DNA. VEGF activates PLCgamma, PKCepsilon, and phosphatidylinositol 3-kinase independently of one another. MEK, PLCgamma, and to a lesser extent PKC, are in the pathway through which KDR activates MAPK. PLCgamma or PKC inhibitors did not affect FGF- or EGF-mediated MAPK activation. MAPK/ERK kinase inhibition diminished VEGF-, FGF-, and EGF-promoted thymidine incorporation into DNA. However, blockade of PKC diminished thymidine incorporation into DNA induced by VEGF but not FGF or EGF. Signaling through KDR/Flk1 activates signaling pathways not utilized by other mitogens to induce proliferation of HUVEC.  相似文献   

11.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

12.
Human pathological conditions of the central nervous system (CNS) associated with angiogenesis (i.e. neovascularization) include neoplastic, as well as infectious, ischemic, and traumatic processes. Upregulation of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) and tenascin-C (TN-C) is spatially and temporally related to neovascularization. Spatially, VEGF/VPF and TN-C are both found at the site of neovascularization, but they are not detected in areas of normal brain or in areas without neovascularization. Temporally, VEGF/VPF and TN-C are found at the peak of angiogenesis and are not detected when angiogenesis had ceased.  相似文献   

13.
Blood vessel development and network patterning are controlled by several signaling molecules, including VEGF, FGF, TGF‐ß, and Ang‐1,2. Among these, the role of VEGF‐A signaling in vessel morphogenesis is best understood. The biological activity of VEGF‐A depends on its reaction with specific receptors Flt1 and Flk1. Roles of VEGF‐A signaling in endothelial cell proliferation, migration, survival, vascular permeability, and induction of tip cell filopodia have been reported. In this study, we have generated Flt1‐tdsRed BAC transgenic (Tg) mice to monitor Flt1 gene expression during vascular development. We show that tdsRed fluorescence is observed within blood vessels of adult mice and embryos, indicative of retinal angiogenesis and tumor angiogenesis. Flt1 expression recapitulated by Flt1‐tdsRed BAC Tg mice overlapped well with Flk1, while Flt1 was expressed more abundantly in endothelial cells of large blood vessels such as dorsal aorta and presumptive stalk cells in retina, providing a unique model to study blood vessel development. genesis 50:561–571, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
In hypoxic/ischemic conditions, astrocytes are involved in neuroprotection and angiogenesis. Vascular endothelial growth factor (VEGF) induces angiogenesis and exhibits neuroprotective and neurotrophic properties. However, the role of placental growth factor (PlGF), a VEGF homolog, in these processes is unclear. Therefore, proliferation and survival studies were performed on PlGF knockout (PlGF-/-) and wild-type (PlGF+/+) mouse astrocytes. A significant increase in cell proliferation and survival to oxygen and glucose deprivation (OGD) was observed in PlGF-/- compared to PlGF+/+ astrocytes. Interestingly, no PlGF protein expression was detected in PlGF+/+ astrocytes and no changes in VEGF protein levels were observed between the two genotypes. Real-time PCR and immunocytochemistry showed over-expression of VEGF receptor-2 (VEGFR-2) in PlGF-/- compared with PlGF+/+ astrocytes. Confocal microscopy revealed nuclear, membrane, and cytoplasmic localization of VEGFR-2. In vivo over-expression of VEGFR-2 mRNA was also detected in PlGF-/- compared with PlGF+/+ astrocytes. Stimulation with VEGF165 resulted in increased proliferation in PlGF-/- compared with PlGF+/+ astrocytes. This effect was blocked by the VEGFR-2 antagonist, VEGF165b. The enhanced proliferation of PlGF-/- astrocytes correlated with increased phospho-extracellular-signal-regulated kinase-1/2 levels, while the resistance to OGD was independent of the phosphatidylinositol 3'-kinase/Akt pathway. These results suggest that VEGFR-2 mediates the enhanced proliferative/OGD resistant phenotype observed in PlGF-/- astrocytes.  相似文献   

15.
Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis.  相似文献   

16.
17.
Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells. Retention of RBCCs in close proximity to angiogenic vessels is mediated by SDF1, a chemokine induced by VEGF in activated perivascular myofibroblasts. RBCCs enhance in situ proliferation of endothelial cells via secreting proangiogenic activities distinct from locally induced activities. Precluding RBCCs strongly attenuated the proangiogenic response to VEGF and addition of purified RBCCs enhanced angiogenesis in excision wounds. Together, the data suggest a model for VEGF-programmed adult neovascularization highlighting the essential paracrine role of recruited myeloid cells and a role for SDF1 in their perivascular retention.  相似文献   

18.
The placental growth factor (PlGF), a member of VEGF family, plays a crucial role in pathological angiogenesis, especially ischemia, inflammation, and cancer. This activity is mediated by its selective binding to VEGF receptor 1 (VEGFR‐1), which occurs predominantly through receptor domains 2 and 3. The PlGF β‐hairpin region spanning residues Q87 to V100 is one of the key binding elements on the protein side. We have undertaken a study on the design, preparation, and functional characterization of the peptide reproducing this region and of a set of analogues where glycine 94, occurring at the corner of the hairpin in the native protein, is replaced by charged as well as hydrophobic residues. Also, some peptides with arginine 96 replaced by other residues have been studied. We find that the parent peptide weakly binds VEGFR‐1, but replacement of G94 with residues bearing H‐bond donating residues significantly improves the affinity. Replacement of R96 instead blocks the interaction between the peptide and the domain. The strongest affinity is observed with the G94H (peptide PlGF‐2) and G94W (peptide PlGF‐10) mutants, while the peptide PlGF‐8, bearing the R96G mutation, is totally inactive. The PlGF‐1 and PlGF‐2 peptides also bind the VEGFR‐2 receptors, though with a reduced affinity, and are able to interfere with the VEGF‐induced receptor signaling on endothelial cells. The peptides also bind VEGFR‐2 on the surface of cells, while PlGF‐8 is inactive. Data suggest that these peptides have potential applications as PlGF/VEGF mimic in various experimental settings.  相似文献   

19.
We have examined the expression and function of the angiogenic factor, vascular endothelial growth factor (VEGF) during the evolution of type II collagen-induced arthritis (CIA). Biologically active VEGF was expressed along a time course that paralleled the expression of two specific VEGF receptors, Flk-1 and Flt-1, and the progression of joint disease. Moreover, levels of VEGF expression correlated with the degree of neovascularization, as defined by vWF levels, and arthritis severity. Macrophage- and fibroblast-like cells, which infiltrated inflamed sites and were then activated by other inflammatory mediators, are probably important sources of VEGF and may thus regulate angiogenesis during the development of CIA. Administration of anti-VEGF antiserum to CIA mice before the onset of arthritis delayed the onset, reduced the severity, and diminished the vWF content of arthritic joints. By contrast, administration of anti-VEGF antiserum after the onset of the disease had no effect on the progression or ultimate severity of the arthritis. These data suggest that VEGF plays a crucial role during an early stage of arthritis development, affecting both neovascularization and the progression of experimentally induced synovitis.  相似文献   

20.
Placental growth factor (PlGF) competes with vascular endothelial growth factor (VEGF) for binding to VEGF receptor (VEGFR)-1 but does not bind VEGFR2. Experiments show that PlGF can augment the response to VEGF in pathological angiogenesis and in models of endothelial cell survival, migration, and proliferation. This synergy has been hypothesized to be due to a combination of the following: signaling by PlGF through VEGFR1 and displacement of VEGF from VEGFR1 to VEGFR2 by PlGF, causing increased signaling through VEGFR2. In this study, the relative contribution of PlGF-induced VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in silico a specific in vitro experiment in which VEGF-PlGF synergy is observed. We show that, whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes is less significant; these results were shown to be robust to significant variation in the kinetic parameters of the model. Synergistic effects observed in that experiment thus appear unlikely to be due to VEGF displacement but to a shift from VEGF-VEGFR1 to PlGF-VEGFR1 complexes and an increase in total VEGFR1 complexes. These results suggest that VEGFR1 signaling can be functional in adult-derived endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号