首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
As part of a larger investigation of theC. alpinum-C. arcticum complex of arctic and North Atlantic areas, isozyme variation ofC. alpinum, C. arcticum, and related taxa was analysed. A total of 124 multilocus phenotypes was divided into more or less distinct groups by numerical analyses. Most groups correspond well to previously recognized taxa. However, what has traditionally been considered asC. arcticum was divided into two distinct groups, consisting of northern (Svalbard, Greenland) and more southern (Norway, Iceland) populations, respectively. The division ofC. arcticum into two taxa is also supported by other kinds of data and the two taxa probably deserve species rank. Serpentine plants from Shetland had multilocus phenotypes similar to those ofC. arcticum from Iceland and should be included in the southern taxon.  相似文献   

2.
Cerastium arcticum is an autogamous pioneer species with a distribution limited to the North Atlantic region. It has been suggested that such species must have survived in ice-free refugia on both sides of the Atlantic throughout the last, or even several, of the Pleistocene glaciations, because they lack special adaptations for long-distance dispersal. To address the possibility for recent trans-Atlantic dispersal of C. arcticum, we analyzed random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) differentiation among 26 populations of this high-polyploid species. Three SCAR markers were obtained that verified the main patterns identified in the RAPD analysis. Eighty-four multilocus RAPD phenotypes were observed in the 126 plants analyzed, based on 35 polymorphic markers. Multivariate analyses and analyses of molecular variance (AMOVAs) identified two highly divergent groups of populations: one arctic group (western and eastern Greenland, and the archipelagos of Svalbard and Franz Josef Land) and one nonarctic group (southern and northern Norway, and Iceland), indicating that C. arcticum is composed of two lineages with different evolutionary histories. However, there was little geographic structuring within each lineage, in spite of the fact that both lineages are disjunctly distributed across the Atlantic. Occurrence of very similar, in some cases even identical RAPD multilocus phenotypes on both sides of the Atlantic in this autogamous allopolyploid is most probably caused by postglacial dispersal. The present geographic distribution of C. arcticum may thus have been established after trans-Atlantic expansion from two Weichselian refugia, one for each evolutionary lineage. Unexpectedly, the level of intrapopulational variation increased towards the north. This may reflect that interpopulational migration is most extensive in the treeless arctic environment, where the species has a more continuous distribution than in the more southerly areas.  相似文献   

3.
Aim Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM communities in an isolated, formerly glaciated, high arctic archipelago, and provide explanations for their phylogeographic origins. Location Svalbard. Methods We generated and analysed internal transcribed spacer (ITS) nuclear ribosomal DNA sequences from both curated sporocarp collections (from Svalbard) and soil polymerase chain reaction (PCR) clone libraries (from Svalbard and the North American Arctic), compared these with publicly available sequences in GenBank, and estimated the phylogenetic diversity of ECM fungi in Svalbard. In addition, we conducted coalescent analyses to estimate migration rates in selected species. Results Despite Svalbard’s geographic isolation and arctic climate, its ECM fungi are surprisingly diverse, with at least 72 non‐singleton operational taxonomic units (soil) and 109 phylogroups (soil + sporocarp). The most species‐rich genera are Thelephora/Tomentella, Cortinarius and Inocybe, followed by Hebeloma, Russula, Lactarius, Entoloma, Sebacina, Clavulina, Laccaria, Leccinum and Alnicola. Despite the scarcity of available reference data from other arctic regions, the majority of the phylogroups (73.4%) were also found outside Svalbard. At the same time, all putative Svalbard ‘endemics’ were newly sequenced taxa from diverse genera with massive undocumented diversity. Overall, our results support long‐distance dispersal more strongly than vicariance and glacial survival. However, because of the high variation in nucleotide substitution rates among fungi, allopatric persistence since the Pliocene, although unlikely, cannot be statistically rejected. Results from the coalescent analyses suggest recent gene flow among different arctic areas. Main conclusions Our results indicate numerous recent colonization events and suggest that long‐distance, transoceanic dispersal is widespread in arctic ECM fungi, which differs markedly from the currently prevailing view on the dispersal capabilities of ECM fungi. Our molecular evidence indicates that long‐distance dispersal has probably played a major role in the phylogeographic history of some ECM fungi in the Northern Hemisphere. Our results may have implications for studies on the biodiversity, ecology and conservation of arctic fungi in general.  相似文献   

4.
The hypothesised hybrid origin of the High Arctic grass × Pucciphippsia vacillans from the putative parents Puccinellia vahliana, Phippsia algida or Phippsia concinna was investigated by analyses of morphological, cytological, and enzymatic data. Chromosome counts showed that × P. vacillans from Svalbard is triploid (2n = 21) and sterile, supporting the hypothesis of a hybrid origin. Enzymatic investigations showed that × P. vacillans is identical to Phippsia in most enzyme markers and furthermore that all four taxa are closely related. Additive banding pattern in one enzyme system (6-PGD) as well as some morphological traits indicated that × P. vacillans is a Puccinellia × Phippsia hybrid. × Pucciphippsia vacillans is morphologically intermediate between Phippsia algida and Puccinellia vahliana in several individual characters as well as in a multivariate analysis, indicating that Phippsia algida is the more probable Phippsia parent. Mature seeds have never been observed in × P. vacillans and the taxon has no known mode of vegetative reproduction. This investigation suggests that it might be a sterile first-generation hybrid wherever it occurs in Svalbard. The close genetic relationship between × Pucciphippsia, Phippsia, and Puccinellia vahliana has implications for their generic delimitation and might suggest that only one genus is involved.  相似文献   

5.
Biogeographers claimed for more than a century that arctic plants survived glaciations in ice-free refugia within the limits of the North European ice sheets. Molecular studies have, however, provided overwhelming support for postglacial immigration into northern Europe, even from the west across the Atlantic. For the first time we can here present molecular evidence strongly favouring in situ glacial persistence of two species, the rare arctic-alpine pioneer species Sagina caespitosa and Arenaria humifusa. Both belong to the 'west-arctic element' of amphi-Atlantic disjuncts, having their few and only European occurrences well within the limits of the last glaciation. Sequencing of non-coding regions of chloroplast DNA revealed only limited variation. However, two very distinct and partly diverse genetic groups, one East and one West Atlantic, were detected in each species based on amplified fragment length polymorphisms (AFLPs), excluding postglacial dispersal from North America as explanation for their European occurrences. Patterns of genetic diversity and distinctiveness indicate that glacial populations existed in East Greenland and/or Svalbard (A. humifusa) and in southern Scandinavia (S. caespitosa). Despite their presumed lack of long-distance dispersal adaptations, intermixed populations in several regions indicate postglacial contact zones. Both species are declining in Nordic countries, probably due to climate change-induced habitat loss. Little or no current connectivity between their highly fragmented and partly distinct populations call for conservation of several populations in each geographic region.  相似文献   

6.
Patterns of intraspecific variation were examined inAntennaria alborosea A. E. Porsild,A. corymbosa E. Nels,A. marginata Greene,A. microphylla Rydb.,A. parvifolia Nutt., andA. umbrinella Rydb. AlthoughA. alborosea was initially considered arctic in distribution, it became apparent that a southern montane element also exists. Our results suggest that morphological differences between arctic and southern montane specimens represent clinal variation. The additional morphological data for specimens that occur more than 1,500 km south of the species' range as it was initially described result in a better understanding of this once presumed arctic taxon. Morphological variation in the dioecious speciesA. corymbosa, A. marginata, A. microphylla, A. parvifolia, andA. umbrinella was greater between the genders than was geographic variation within each gender. These results demonstrate that both pistillate and staminate specimens must be examined in dioecious species ofAntennaria if morphological variation in the respective species is to be fully understood. Character size or number of broadly distributed species (A. microphylla andA. parvifolia) generally decreased with increasing longitude, whereas characters of species with more restricted distributions (A. alborosea, A. corymbosa, andA. marginata) generally increased in size or number with increasing latitude or longitude.Antennaria umbrinella was an exception in this respect.  相似文献   

7.
Seven species ofCatapyrenium and one ofPlacidiopsis are reported from Greenland. Five taxa, viz.Catapyrenium michelii, C. norvegicum, C. squamulosum, C. waltheri andPlacidiopsis pseudocinerea are new to the area. Taxonomy, distribution and ecology are briefly discussed. A key to species and distribution maps are presented.Catapyrenium norvegicum is described as new.  相似文献   

8.
Electrophoretic variation within and between North Atlantic minke whale samples(Balaenoptera acutorostrata) from West Greenland, Iceland, and Norway was investigated. In the West Greenland samples, 28 enzyme systems were examined, representing 36 loci, of which 6 were found to be polymorphic. In Icelandic and Norwegian samples, 22 enzyme systems were examined, representing 29 loci, of which 6 and 5 were found to be polymorphic, respectively. The average heterozygosity was 0.058 (SE=0.024) in samples from West Greenland, 0.074 (SE=0.028) in samples from Iceland, and 0.054 (SE=0.023) in samples from Norway. No significant deviations from the expected Hardy—Weinberg genotypic frequencies, within samples taken from the same area, were found. Significant differences in allele frequencies were observed, however, between samples from the three different areas. The average Nei's genetic distance was 0.014 and the averageF st value was 0.126. The genetic differences between the samples from the different areas indicate that those from West Greenland, Iceland, and Norway represented different breeding populations.  相似文献   

9.
Population structure in many Arctic marine mammal species reflects a dynamic interplay between physical isolating mechanisms and the extent to which dispersal opportunities are met. We examined variation within mtDNA and eight microsatellite markers to investigate population structure and demographic history in beluga whales in the North Atlantic. Genetic heterogeneity was observed between Svalbard and West Greenland that reveals limited gene flow over ecological time scales. Differentiation was also recorded between Atlantic belugas and two previously studied populations in the North Pacific, the Beaufort Sea and Gulf of Alaska. However, Bayesian cluster analysis of the nDNA data identified two population clusters that did not correspond to the respective ocean basins, as predicted, but to: (1) Arctic (Svalbard–White Sea–Greenland–Beaufort Sea) and (2) Subarctic (Gulf of Alaska) regions. Similarly, the deepest phylogeographic signal was between the Arctic populations and the Gulf of Alaska. Fitting an isolation-with-migration model yielded genetic abundance estimates that match census estimates and revealed that Svalbard and the Beaufort Sea likely diverged 7,600–35,400 years ago but have experienced recurrent periods with gene flow since then, most likely via the Russian Arctic during subsequent warm periods. Considering current projections of continued sea ice losses in the Arctic, this study identified likely routes of future contact among extant beluga populations, and other mobile marine species, which have implications for genetic introgression, health, ecology and behavior.  相似文献   

10.
Restriction site variation in the nuclear 18S–25S ribosomal RNA genes (rDNA) was analyzed hierarchically in a species complex in the fern genusPolystichum. Two distinct rDNA repeat types were present in all individuals ofPolystichum examined. No variation was detected among individuals within a population ofP. munitum, among populations ofP. munitum orP. imbricans, or among the six diploid species ofPolystichum from North America, including the circumborealP. lonchitis. The identity of rDNA repeats across all six North American species ofPolystichum may reflect an overall similarity of the nuclear genomes of these species, an observation supported by isozyme data as well. However, this nuclear similarity contrasts sharply with the highly divergent chloroplast genomes of these six species. The conservative nature of the rDNA inPolystichum also is in contrast to the much more variable rDNAs of most angiosperms investigated. Perhaps the tempo and mode of evolution of rDNA in ferns differ from those of angiosperms; however, the data base for fern rDNA is very small. Furthermore, the number of repeat types per individual is consistent with a diploid, rather than polyploid, condition despite the high chromosome number (n = 41) of these plants, although homogenization of multiple, divergent rRNA genes cannot be disproven.  相似文献   

11.
Studies of the genetic variation involving allozymes, mitochondrial and nuclear DNA (microsatellites) in walruses (Odobenus rosmarus) were reviewed. In addition, the genetic relationships of a total of 211 Atlantic walruses, O. r. rosmarus, from 5 sampling areas west and east of Greenland were studied using 12 nuclear DNA-microsatellite loci and restriction fragment length polymorphism obtained from the ND1, ND2 and ND3/4 segments of the mitochondrial DNA (mtDNA). At the mtDNA level, no divergence was observed among the three sampling areas east of Greenland (i.e. East Greenland, Svalbard and Franz Josef Land), whereas areas west of Greenland (i.e. Northwest and West Greenland) showed some differentiation. The genetic variation at the microsatellite loci grouped the individuals into four sub-populations: Northwest Greenland, West Greenland, East Greenland and a common Svalbard-Franz Josef Land sub-population. A significant correlation between genetic distance and geographic distance between the sampling areas (isolation-by-distance effect) was detected, especially at the mtDNA level. At a small-scale phylo-geographical level, the mtDNA data indicated that Atlantic walruses have diverged into two major groups: one northwest (i.e. in the North Water) and one east of Greenland (i.e. an East Greenland-Svalbard-Franz Josef Land group), whereas the haplotype distribution in the West Greenland sample reflected a mixture of both these groups. The microsatellite data supported a general grouping of walruses to the west and east of Greenland.  相似文献   

12.
It has been suggested that many arctic-alpine plant species have limited dispersal ability and cannot have arrived in Scandinavia and the arctic archipelago of Svalbard by long-distance dispersal after a total glaciation. It has therefore been proposed that such species must have survived the entire glaciation(s) in ice-free refugia in southern Norway, northern Norway and Svalbard. We investigated random amplified polymorphic DNA (RAPD) variation among 28 populations from Norway and Svalbard of one of these arctic-alpine 'short-distance dispersers', the selfing polyploid Saxifraga cespitosa . In an analysis of molecular variance ( AMOVA ), more variation was found among populations within the three postulated refugia regions (45%) than among these regions (25%). Spatial autocorrelation (Mantel) analyses showed that the genetic distance monotonously increased with increasing geographical distance. In UPGMA and PCO analyses, the populations from Norway and Svalbard formed a south–north cline that continued across the Barents Sea barrier. The results suggest that there has been recent dispersal among the three postulated refugia regions and thus that postglacial dispersal into these refugia regions from other distant areas also must represent a possibility. The observed geographical pattern of the genetic variation may have been established after expansion from different source areas outside the North European ice sheet and/or from different refugia areas 'within' the ice sheet, but it is probably not possible to distinguish among these alternatives. The results for S. cespitosa are consistent with a dynamic late- and postglacial scenario with extensive plant dispersal, and support the conclusion from our previous study of the outbreeding Saxifraga oppositifolia ; the hypothesis of glacial survival in Norway and/or Svalbard is superfluous.  相似文献   

13.
Scopelophila cataractae, one of the so-called copper mosses, has a broad geographic distribution that includes North, Central, and South America, Europe, and Asia, but is rare throughout its range. A genetic analysis of 32 populations from the United States, Europe, and Asia based on 15 putative allozyme loci indicates that levels of genetic diversity vary among geographic regions. Six European populations are fixed for the same alleles at all 15 loci, consistent with the hypothesis thatS. cataractae is a recent immigrant in that region. The species is more diverse in the U.S., where it appears to be native. Five populations collected on copper-enriched soils around shrines and temples in Tokyo are genetically monomorphic, but Asian populations from another Japanese site, India, and Nepal are exceptionally diverse in terms of numbers of alleles and multilocus haplotypes, total gene diversity (HT), and in the degree of differentiation among populations (measured as Nei'sI andD). Long-distance dispersal has probably played an important role in the geographic history ofS. cataractae, but the species appears to be native in both the New and Old Worlds. Gene flow between plants disjunct on different continents is insufficient to explain the lack of geographically correlated morphological and genetic differentiation inS. cataractae.  相似文献   

14.
The major physiognomic and ecological categories of the lichen-rich, epigeic communities in the boreal (taiga) and arctic (tundra) zones are defined and their syntaxonomy and ecology in Europe, Asia and North America is reviewed. In the boreal and hemiarctic areas open, dry, acidophytic lichen woodlands are widespread, especially on sandy habitats. Their epigeic lichen synusiae are usually dominated by four fruticoseCladina species, being extremely homogeneous in species composition and structure throughout the boreal zone, while the dominant trees and the other vascular plant flora of the woodlands are geographically more variable. No phytosociological classification system exists that would cover most of these communities over the circumpolar regions. Very similar communities, though much more poorly known, are found on thin soils over Precambrian rock outcrops. Other sites to produce epigeic lichen communities include open sand dunes, treeless heathlands, drier bogs and many seral stages, like those on road banks. Boreal lichen-rich communities on eutrophic soils may be developed in semiarid regions, in particular. In the Arctic, lichens are common in most communities, and the driest ones are regularly lichen-dominated, whether acidophytic or eutrophytic, chionophytic or achionophytic. Detailed syntaxonomic systems for their classification have been developed, especially in Greenland and Scandinavian mountains (in oroarctic zones in the latter regions). The richest fruticose lichen areas are in continental, hemiarctic timberline regions in northern Siberia and Canada. The southern and middle arctic subzones are also characterized by many macrolichens, such asCetraria cucullata, C. nivalis, Alectoria ochroleuca, andThamnolia vermicularis, but everywhere also small, crustose lichens are common on soil, such asRinodina turfacea andLopadium pezizoideum, which are often overlooked in vegetation analyses. The presence of microlichens and the formation of mosaic micropatterns of soil lichen communities is particularly typical of the northern arctic subzone. The conservation problems of the boreal and arctic lichen communities include overgrazing by reindeer or caribou, which has caused delichenization in some regions, extensive forest and tundra fires, use of heavy transport vehicles in forestry and tundra operations, and, locally, heavy industrial air pollution.  相似文献   

15.
Infraspecific genetic differentiation was analysed in two tetraploid annual bromegrasses,Bromus lanceolatus (from N Africa) andB. hordeaceus (from N Africa and France). Genetic analysis of populations was based on allozyme polymorphisms at 17 loci. Different fixed heterozygous phenotypes were scored in both species, according to their allopolyploid origin. In N Africa, more variation occurred among populations ofB. lanceolatus than ofB. hordeaceus. The variation was not randomly distributed among populations of both species. InB. lanceolatus, differentiation was correlated with climatic variables rather than with geographic distance between populations. Higher correlation of genetic differentiation with geographic distance occurred inB. hordeaceus, particularly at large geographic scale, between French and N African populations. Within each region, the populations appeared weakly genetically differentiated, even when belonging to different subspecies.  相似文献   

16.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

17.
Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.  相似文献   

18.
Abstract. Species composition and biomass of four plant communities were investigated in two coastal polar desert areas in eastern North Greenland, bordering the North East Water Polynya - an ice-free sea area kept open by upwelling - and compared with inland areas in North Greenland. Herb barren, the poorest type, has a species richness of 6 species/m2, a cover of 0.7 %, and an aboveground biomass of 0.6 g/m2 (vascular plants). The richest type, Saxifraga oppositifolia snowbed, has 10 species/m2, 5.0 % cover, and 11.2 g/m2 biomass. A floristic and vegetation boundary exists a few kilometres from the coast. The coastal areas bordering the North East Water Polynya had an impoverished flora and vegetation compared to areas near the ice-covered sea, possibly caused by very low summer temperatures and high frequency of clouds. A new delimitation of the polar deserts of Greenland is proposed on the basis of the number of vascular plant species, the occurrence of species with a specific inland distribution in North Greenland and the dominating life forms. At present the polar desert zone includes only areas within a zone up to ca. 15 km from the outer coast of high arctic Greenland - north of ca. 80° N. Large areas formerly classified as polar deserts in eastern North Greenland, as well as in Washington Land in western North Greenland, are excluded. New floristic data confirm that Greenland is correctly included in the Canadian province of the arctic polar deserts, whereas there is no reason for subdividing the polar deserts of the Canadian province.  相似文献   

19.
中国产的Clavicorona pyxidata与北美的种样本间配对实验结果显示该种在不同的地理分布区内的种群之间完全性亲和或具有相同的交配型等位基因,表明中国产与北美产的该形态学种同属于一个生物种。日本产的标本与C. pyxidata在子实体外部形态及孢子尺度上有差异,虽然在日本被鉴定为该种。日本产的菌株与C. pyxidata菌株间配对实验证明二者之间完全不亲和,即属于不同的生物种。生殖隔离拌随着形态学变异。  相似文献   

20.
Lithothamnion tophiforme (Esper) Unger is a dominant, arctic, saxicolous species that extends southward, albeit with reduced cover, into the deeper colder waters of the North Atlantic subarctic, where it also occurs in significant rhodolith deposits with L. glaciale. The external appearance of L. tophiforme is distinctive, but typification, anatomy, reproduction, ecology, and biogeography have not been previously analyzed. These topics are now addressed, with extensive use of SEM, in comparison with other North Atlantic arctic and subarctic melobesioid genera and species. The species considered in this article comprise 95% of the coralline biomass of the colder North Atlantic and adjacent arctic (i.e. less than 12° C summer and less than 0° C winter). In the outer thallus region of coralline algae, crust extension proceeds, calcification develops, surface sloughing and grazing occur, and reproductive structures are initiated. Analysis of the ultrastructure of the outer thallus region (epithallium, meristem, and perithallium) of L. tophiforme shows distinctive generic similarities and specific differences from the other Lithothamnion species discussed here. Considerable generic differences from the Clathromorpum and Leptophytum species also encountered in the region considered are highlighted as well. We discuss the functional and taxonomic implications of these distinguishing features and recommend that they be more widely considered in future research on coralline algae to understand more fully the ecology and evolution of the Corallinales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号