首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography (HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor. The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner.  相似文献   

2.
We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.  相似文献   

3.
Heparin can activate a receptor tyrosine kinase.   总被引:3,自引:0,他引:3       下载免费PDF全文
G Gao  M Goldfarb 《The EMBO journal》1995,14(10):2183-2190
Heparin, a densely sulfated glycosaminoglycan produced by mast cells, is best known for its inhibitory effects on the blood coagulation system. Heparin or heparan sulfate proteoglycans are also essential cofactors for the interaction of fibroblast growth factors (FGFs) with their receptor tyrosine kinases (FGFRs). Here we show that heparin is a growth factor-independent activating ligand for FGFR-4. Heparin stimulates FGFR-4 autophosphorylation on transfected myoblasts, fibroblasts and lymphoid cells, and is most potent on cells lacking surface heparan proteoglycan. Two functional analogs of heparin, fucoidan and dextran sulfate, are also activators of FGFR-4, while neither heparin nor its analogs can stimulate FGFR-1 in the absence of FGF. A mutation in the FGFR-4 ectodomain which impairs receptor activation by FGFs does not interfere with activation by heparin, demonstrating that receptor domains required for heparin or FGF activation are not identical. Heparin activation of FGFR-4 or of a chimeric receptor bearing FGFR-4 ectodomain and FGFR-1 cytodomain triggers downstream tyrosine phosphorylation of several signaling proteins, and induces proliferation of cells bearing the chimeric receptor. Consistent with these findings, a soluble FGFR-4 ectodomain has strong FGF-independent affinity for immobilized heparin resin, while soluble FGFR-1 requires FGF for stable heparin interaction. Heparin activation of FGFR-4 is the first example of a mammalian polysaccharide serving as a signaling ligand.  相似文献   

4.
The tyrosine kinase activity intrinsic to the insulin receptor is thought to be important in eliciting the intracellular responses to insulin; however, it has been difficult to determine the biochemical functions of the proteins which are substrates for this receptor. Treatment of Chinese hamster ovary (CHO) cells overexpressing the human insulin receptor (CHO.T) with insulin results in a 38 +/- 11 (mean +/- S.E., n = 9)-fold increase in a phosphatidylinositol (PtdIns) kinase activity in anti-phosphotyrosine immunoprecipitates of whole cell lysates. One minute of treatment of cells with insulin causes a dramatic increase in the PtdIns kinase activity in the anti-phosphotyrosine immunoprecipitates; the activity peaks within 5 min and remains elevated for at least 60 min after addition of insulin to the cells. This response is only slightly delayed compared with the time course we observe for activation of the insulin receptor tyrosine kinase. The insulin dose-response curves are also very similar for the activation of the insulin receptor tyrosine kinase activity and for the appearance of PtdIns kinase in the anti-phosphotyrosine immunoprecipitates. Stimulation of the endogenous insulin receptor of CHO cells also results in the association of PtdIns kinase activity with phosphotyrosine-containing proteins. However, CHO cells are less sensitive to insulin than CHO.T cells, and the maximal PtdIns kinase activity in antiphosphotyrosine immunoprecipitates from CHO cells is one-sixth that of CHO.T cells. In contrast, immunoprecipitates from CHO.T cells made with anti-insulin receptor antibodies do not contain significant levels of PtdIns kinase activity. This demonstrates that the PtdIns kinase is either a substrate for the insulin receptor tyrosine kinase or is tightly associated with another tyrosine phosphoprotein, which is not the insulin receptor.  相似文献   

5.
Two systems in vitro are described that show insulin-stimulated phosphorylation of the insulin receptor on serine residues. In the first system, insulin receptor was purified partially from Fao rat hepatoma cells by direct solubilization of the cells in Triton X-100 and chromatography on wheat-germ-agglutinin-agarose. Phosphorylation of these preparations with [gamma-32P]ATP in the presence or absence of insulin resulted in 32P incorporation exclusively into phosphotyrosine residues. Serine kinase activity towards the insulin receptor was reconstituted by adding extracts of Fao cells. Prior exposure of the cells to insulin stimulated serine kinase activity towards the insulin receptor in extracts 7.2-fold. A receptor serine kinase activity enhanced by treatment of cells with cyclic AMP analogues was also retained in the reconstituted system. In the second system, insulin receptor and insulin-sensitive serine kinase activity towards the insulin receptor were co-purified from human placenta. The protocol involved preparation of membranes, before solubilization and chromatography on wheat-germ-agglutinin-agarose, by using gentle procedures designed not to disrupt a potentially labile association between the insulin receptor and the serine kinase. Serine kinase activity in these preparations towards the insulin receptor was stimulated up to 10-fold by insulin, and the stoicheiometry of serine phosphorylation was estimated to be approx 0.8 mol/mol of insulin receptor for phosphorylations performed in the presence of insulin. Thus a preparation of insulin receptor is described for the first time that is phosphorylated to high stoicheiometry on serine in an insulin-dependent manner. Conditions that facilitate recovery and assay of serine kinase activity are defined and discussed. These systems provide a basis for characterizing the nature of the insulin-sensitive serine kinase that phosphorylates the insulin receptor, and defining its role in insulin action and control of receptor function.  相似文献   

6.
In intact rat hepatocytes insulin stimulates the phosphorylation of the beta-subunit of its receptor exclusively on serine residues, which are also phosphorylated in the absence of insulin. In contrast, in partially purified insulin receptors derived from these same cells and in highly purified insulin receptors obtained by immunoprecipitation with anti-receptor antibodies, the receptor beta-subunit is phosphorylated solely on tyrosine residues. For both cell-free systems, insulin's stimulatory action on receptor phosphorylation leads to an increase in phosphotyrosine. When partially purified receptors were used to phosphorylate two exogenous substrates, casein and histone, insulin was found to stimulate the phosphorylation of both tyrosine and serine. However, the basal and insulin-stimulated kinase activity of immunoprecipitated receptors was only tyrosine-specific. From these observations we propose that the insulin-receptor complex consists of two different insulin-stimulatable kinase activities: (1) a tyrosine-specific kinase, which is a constituent of the insulin-receptor structure and whose activation is likely to be the first post-binding event in insulin action; and (2) a serine-specific kinase, which is closely associated with the receptor in the cell membrane.  相似文献   

7.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.  相似文献   

8.
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins.  相似文献   

9.
Insulin resistance is a key pathophysiologic feature of obesity and type 2 diabetes and is associated with other human diseases, including atherosclerosis, hypertension, hyperlipidemia, and polycystic ovarian disease. Yet, the specific cellular defects that cause insulin resistance are not precisely known. Insulin receptor substrate (IRS) proteins are important signaling molecules that mediate insulin action in insulin-sensitive cells. Recently, serine phosphorylation of IRS proteins has been implicated in attenuating insulin signaling and is thought to be a potential mechanism for insulin resistance. However, in vivo increased serine phosphorylation of IRS proteins in insulin-resistant animal models has not been reported before. In the present study, we have confirmed previous findings in both JCR:LA-cp and Zucker fatty rats, two genetically unrelated insulin-resistant rodent models, that an enhanced serine kinase activity in liver is associated with insulin resistance. The enhanced serine kinase specifically phosphorylates the conserved Ser(789) residue in IRS-1, which is in a sequence motif separate from the ones for MAPK, c-Jun N-terminal kinase, glycogen-synthase kinase 3 (GSK-3), Akt, phosphatidylinositol 3'-kinase, or casein kinase. It is similar to the phosphorylation motif for AMP-activated protein kinase, but the serine kinase in the insulin-resistant animals was shown not to be an AMP-activated protein kinase, suggesting a potential novel serine kinase. Using a specific antibody against Ser(P)(789) peptide of IRS-1, we then demonstrated for the first time a striking increase of Ser(789)-phosphorylated IRS-1 in livers of insulin-resistant rodent models, indicating enhanced serine kinase activity in vivo. Taken together, these data strongly suggest that unknown serine kinase activity and Ser(789) phosphorylation of IRS-1 may play an important role in attenuating insulin signaling in insulin-resistant animal models.  相似文献   

10.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.  相似文献   

11.
The endocytosis, recycling, and degradation of the insulin receptor were studied in IM-9 cells and U-937 cells by employing two monoclonal antibodies directed at the alpha subunit of the human insulin receptor, antibodies MA-5 and MA-10. Antibody MA-5 is an insulin agonist and MA-10 is an insulin antagonist (Forsayeth, J., Caro, J.F., Sinha, M.K., Maddux, B.A., and Goldfine, I.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3448-3451). Both monoclonal antibodies, like insulin, induced the endocytosis of the insulin receptor within 15 min. Upon removal of extracellular ligand the internalized receptor recycled to the cell surface. At this time there was no degradation of the receptor as measured by a sensitive insulin receptor radioimmunoassay. After 20 h of incubation, insulin and MA-5, but not MA-10, induced significant receptor degradation as measured by both insulin receptor radioimmunoassay and metabolic labeling studies. These studies demonstrated, therefore, that: 1) internalization and recycling of the receptor can be induced by antireceptor monoclonal antibodies that are either insulin agonists or insulin antagonists; 2) enhanced receptor degradation can be induced by monoclonal antibodies that are insulin agonists; and 3) the process of receptor internalization does not necessarily lead to enhanced receptor degradation. Since prior studies have indicated that neither MA-5 nor MA-10 enhance insulin receptor kinase activity, the present studies also suggest that insulin receptor endocytosis and degradation induced by ligands different than insulin can occur without activation of this process.  相似文献   

12.
Tuning of gamma-aminobutyric acid type A (GABA(A)) receptor function via phosphorylation of the receptor potentially allows neurons to modulate their inhibitory input. Several kinases, both of the serine-threonine kinase and the tyrosine kinase families, have been proposed as candidates for such a modulatory role in vivo. However, no GABA(A) receptor-phosphorylating kinase physically associated with the receptor has been identified so far on a molecular level. In this study, we demonstrate a GABA(A) receptor-associated protein serine kinase phosphorylating specifically beta3-subunits of native GABA(A) receptors. The characteristics of this novel kinase clearly distinguish it from enzymatic activities that have been shown so far to phosphorylate the GABA(A) receptor. We putatively identify this protein kinase as the previously described GTAP34 (GABA(A) receptor-tubulin complex-associated protein of molecular mass 34 kDa). Using expressed recombinant fusion proteins, we identify serine 408 as a major target of the phosphorylation reaction, whereas serine 407 is not phosphorylated. This demonstrates the high specificity of the kinase. Phosphorylation of serine 408 is known to result in a decreased receptor function. The direct association of this kinase with the receptor indicates an important physiological role.  相似文献   

13.
We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in partially purified receptor preparations from ZHC cells grown either in normal medium or in medium supplemented with linoleic acid or 25-hydroxycholesterol. Insulin binding to the lectin-purified insulin receptor showed only a small alteration in receptor affinity for the preparations from lipid-treated cells. Insulin-stimulated autophosphorylation of the beta-subunit of the insulin receptor, as well as insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr)4:1, was significantly decreased in the preparations from lipid-modified cells. Although differences in basal levels were observed, the magnitude of the insulin-stimulated kinase activity was significantly decreased in receptor preparations from lipid-treated cells. These findings indicate that experimental modification of the lipids of cultured hepatoma cells can produce in insulin receptor kinase activity changes that are proportional to the reduced insulin action observed in these cells.  相似文献   

14.
The insulin-like properties of anti-insulin receptor antibodies (P95 Ab) that have been characterized as being directed against the receptor beta-subunit, were studied as probes to assess the interrelationship between insulin action and receptor phosphorylation. When tested on intact cells, P95 Ab mimicked insulin effects. On isolated fat cells, they stimulated 2-deoxyglucose (2-DG) transport and lipogenesis and the P95 antibody maximal effects (173 and 232% of the control values, respectively) represented about 50% of the maximal effects elicited by insulin (317 and 475% of the control values). On cultured Zajdela hepatoma cells (ZHC cells), P95 Ab also mimicked insulin action on the incorporation of [U-14C]glucose into glycogen (158 and 207% of the control value for antibody- and insulin-treated cells, respectively). In all cases the antibody effects were dose-dependent, specific and, when maximal, were not additive with those elicited by insulin. When tested in a cell-free system, P95 Ab faithfully reproduced insulin action on the phosphorylation of the receptor beta-subunit. The maximal antibody and insulin effects (317 and 328% of the control value, respectively) were not additive. P95 Ab were also equally potent as insulin to stimulate the receptor-mediated phosphorylation of an exogenous substrate (365 and 379% of the control value in P95 antibody- and insulin-treated receptors, respectively). As well, P95 Ab proved as able as insulin in stimulating the tyrosine kinase activity of the receptor (89% of the hormone effect) when the activation was carried out in vivo. Taken together, these results are consistent with a role for the kinase activity of the insulin receptor in mediating the action of insulin.  相似文献   

15.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   

16.
The insulin receptor appears as a tetrameric glycoprotein consisting of two Mr 130,000 subunits (alpha), and two Mr 95,000 subunits (beta) in a disulfide-linked complex. Insulin bound to its specific cell surface receptors in its target cells leads to a complex array of molecular events resulting in insulin effects. It is now generally believed that protein phosphorylation-dephosphorylation reactions represent an important mechanism by which a variety of extracellular stimuli regulate cellular functions. Insulin mediates such reactions, but it is not known whether these are the biochemical link between the binding of insulin to its receptor and its final cellular effects. In search of initial post-binding events which might play a role in insulin action, we looked for phosphorylation of insulin receptors. We show that the insulin receptor displays two functional domains, an insulin binding alpha-subunit, and an insulin responsive protein kinase contained in the beta-subunit. We envisage the insulin receptor as an integrated system for transmembrane signal transmission in which hormone binding to the alpha-subunit leads to activation of the beta-subunit via conformational changes.  相似文献   

17.
A serine protein kinase that phosphorylates the beta-subunit of the insulin receptor has been partially purified 5,000-fold from HeLa cell membranes. The enzyme has been purified by ion-exchange and hydroxylapatite chromatography and sucrose gradient centrifugation; it has an apparent molecular weight of 36,000-43,000 daltons. It exhibits the following properties: (a) it catalyzes the phosphorylation of the autophosphorylated insulin receptor more efficiently than the nonautophosphorylated insulin receptor, (b) it decreases insulin receptor phosphorylation of tubulin but has no effect on insulin receptor phosphorylation of microtubule-associated proteins or reduced and carboxyamidomethylated lysozyme. The enzyme also phosphorylates casein and ribosomal protein S6 and shares many properties with casein kinase I: (a) similar molecular weight, (b) utilization of ATP but not GTP as phosphoryl donor, and (c) sensitivity to inhibition by heparin. Based on several criteria the receptor serine kinase is neither protein kinase C nor the cAMP-dependent protein kinase.  相似文献   

18.
L S Mathews  W W Vale 《Cell》1991,65(6):973-982
Activins are involved in the regulation of multiple biological events, ranging from early development to pituitary function. To characterize the cellular mechanisms involved in these processes, cDNAs coding for an activin receptor were cloned from AtT20 mouse corticotropic cells by screening COS cell transfectants for binding of 125I-activin A. The cDNAs code for a protein of 494 amino acids comprising a ligand-binding extracellular domain, a single membrane-spanning domain, and an intracellular kinase domain with predicted serine/threonine specificity. 125I-activin A binds to transfected COS cells with an affinity of 180 pM and can be competed by activin A, activin B, and inhibin A, but not by transforming growth factor beta 1. The kinase domain, but not the extracellular sequence, of the activin receptor is most closely related to the C. elegans daf-1 gene product, a putative transmembrane serine/threonine-specific protein kinase for which the ligand is not known.  相似文献   

19.
Protein kinase C-zeta (PKC-zeta) is a serine/threonine kinase downstream from phosphatidylinositol 3-kinase in insulin signaling pathways. However, specific substrates for PKC-zeta that participate in the biological actions of insulin have not been reported. In the present study, we identified insulin receptor substrate-1 (IRS-1) as a novel substrate for PKC-zeta. Under in vitro conditions, wild-type PKC-zeta (but not kinase-deficient mutant PKC-zeta) significantly phosphorylated IRS-1. This phosphorylation was reversed by treatment with the serine-specific phosphatase, protein phosphatase 2A. In addition, the overexpression of PKC-zeta in NIH-3T3(IR) cells caused significant phosphorylation of cotransfected IRS-1 as demonstrated by [(32)P]orthophosphate labeling experiments. In rat adipose cells, endogenous IRS-1 coimmunoprecipitated with endogenous PKC-zeta, and this association was increased 2-fold upon insulin stimulation. Furthermore, the overexpression of PKC-zeta in NIH-3T3(IR) cells significantly impaired insulin-stimulated tyrosine phosphorylation of cotransfected IRS-1. Importantly, this was accompanied by impaired IRS-1-associated phosphatidylinositol 3-kinase activity. Taken together, our results raise the possibility that IRS-1 is a novel physiological substrate for PKC-zeta. Because PKC-zeta is located downstream from IRS-1 and phosphatidylinositol 3-kinase in established insulin signaling pathways, PKC-zeta may participate in negative feedback pathways to IRS-1 similar to those described previously for Akt and GSK-3.  相似文献   

20.
Inhibition of the insulin receptor tyrosine kinase by sphingosine.   总被引:1,自引:0,他引:1  
R S Arnold  A C Newton 《Biochemistry》1991,30(31):7747-7754
Sphingosine inhibits autophosphorylation of the insulin receptor tyrosine kinase in vitro and in situ. This lysosphingolipid has been shown previously to inhibit the Ca2+/lipid-dependent protein kinase C. Here we show that insulin-dependent autophosphorylation of partially purified insulin receptor is half-maximally inhibited by 145 microM sphingosine (9 mol %) in Triton X-100 micelles. Half-maximal inhibition of protein kinase C autophosphorylation occurs with 60 microM sphingosine (3.4 mol %) in Triton X-100 mixed micelles containing phosphatidylserine and diacylglycerol. Sphingomyelin does not inhibit significantly the insulin receptor, suggesting that, as with protein kinase C, the free amino group may be essential for inhibition. Similar to the effects observed for protein kinase C, inhibition of the insulin receptor kinase by sphingosine is reduced in the presence of other lipids. However, the reduction displays a marked dependence on the lipid species: phosphatidylserine, but not a mixture of lipids compositionally similar to the cell membrane, markedly reduces the potency of sphingosine inhibition. The inhibition occurs at the level of the protein/membrane interaction: a soluble form of the insulin receptor comprising the cytoplasmic kinase domain is resistant to sphingosine inhibition. Lastly, sphingosine inhibits the insulin-stimulated rate of tyrosine phosphorylation of the insulin receptor in NIH 3T3 cells expressing the human insulin receptor. These results suggest that sphingosine alters membrane function independently of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号