首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction.  相似文献   

2.
Abstract Polyvinyl alcohol (PVA) was utilized by a symbiotic mixed culture which was composed of Pseudomonas putida VM15A and Pseudomonas sp. VM14C. The PVA oxidase was found in the culture fluid, membrane, and cytosol fractions of VM15C. The membrane-bound PVA oxidase was purified by several steps of chromatography. The enzyme (p I = 9.6) exhibited the maximum activity at pH 8.0 to 8.4 and 45°C, and utilized secondary alcohol as well as PVA. The enzyme showed the PVA dehydrogenating activity linking with phenazine ethosulfate, indicating the possibility that PVA oxidation is coupled with an electron transport chain on the bacterial membrane.  相似文献   

3.
A polyvinyl alcohol (PVA) oxidase-deficient mutant of Pseudomonas sp. strain VM15C, strain ND1, was shown to possess PVA dehydrogenase, in which pyrroloquinoline quinone (PQQ) functions as a coenzyme. The mutant grew on PVA and required PQQ for utilization of PVA as an essential growth factor. Incubation of the membrane fraction of the mutant with PVA caused cytochrome reduction of the fraction. Furthermore, it was found that in spite of the presence of PVA oxidase, the membrane fraction of strain VM15C grown on glucose without PQQ required PQQ for cytochrome reduction during incubation with PVA. The results provide evidence that PVA dehydrogenase couples with the electron transport chain of PVA-degrading bacteria but that PVA oxidase does not.  相似文献   

4.
The pathway of 2-chloroethanol degradation in the denitrifying Pseudomonas stutzeri strain JJ was investigated. In cell-free extracts, activities of a phenazine methosulfate (PMS)-dependent chloroethanol dehydrogenase, an NAD-dependent chloroacetaldehyde dehydrogenase, and a chloroacetate dehalogenase were detected. This suggested that the 2-chloroethanol degradation pathway in this denitrifying strain is the same as found in aerobic bacteria that degrade chloroethanol. Activity towards primary alcohols, secondary alcohols, diols, and other chlorinated alcohols could be measured in cell-free extracts with chloroethanol dehydrogenase (CE-DH) activity. PMS and phenazine ethosulfate (PES) were used as primary electron acceptors, but not NAD, NADP or ferricyanide. Cells of strain JJ cultured in a continuous culture under nitrate limitation exhibited chloroethanol dehydrogenase activity that was a 12 times higher than in cells grown in batch culture. However, under chloroethanol-limiting conditions, CE-DH activity was in the same range as in batch culture. Cells grown on ethanol did not exhibit CE-DH activity. Instead, NAD-dependent ethanol dehydrogenase (E-DH) activity and PMS-dependent E-DH activity were detected.  相似文献   

5.
A protein has been purified from the membranes of bloodstream forms of Trypanosoma brucei brucei. The purified material contained a single polypeptide chain of molecular mass 67 kilodaltons as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; under "native" conditions it migrated through a Sephacryl S-300 column with a similar molecular mass. The purified protein catalysed electron transfer from sn-glycerol 3-phosphate to oxygen with the subsequent formation of water. Electron transfer by the purified enzyme to O2 was dependent on the presence of low concentrations of the mediator phenazine methosulfate. This protein is clearly the major membrane-bound sn-glycerol-3-phosphate dehydrogenase, but it also has some characteristics suggestive of the trypanosome alternative oxidase activities.  相似文献   

6.
Obligate methylotrophs are divisible into two types on the basis of ultrastructural biochemical characteristics. Both groups possess a soluble phenazine methosulfate (PMS)-dependent methanol dehydrogenase. In addition, particulate PMS-dependent methanol dehydrogenase and PMS-independent methanol oxidase have been found in the type I membrane group. A procedure was developed for the crystallization of methanol dehydrogenase from the soluble fraction of the type II obligate methylotroph Methylosinus sporium. This is the first report of a crystalline methanol dehydrogenase from a methylotrophic bacterium. The crystallized enzyme is homogeneous as judged by ultracentrifugation and by acrylamide gel electrophoresis. In the presence of an electron acceptor (phenazine or phenazinium compound) and an activator (ammonium compound), the crystallized enzyme catalyzed the oxidation of primary alcohols and formaldehyde. Secondary, tertiary, and aromatic alcohols were not oxidized. The molecular weight of the enzyme as estimated by gel filtration is approximately 60,000, and as estimated by sedimentation equilibrium analysis it is 62,000. The sedimentation constant (S20,W) is 2.9. The subunit size determined by sodium dodecyl sulfate-gel electrophoresis is approximately 60,000. The amino acid composition and spectral properties of the enzyme are also presented. Antisera prepared against the crystalline enzyme are nonspecific, they cross-reacted and inhibited isofunctional enzymes from other obligate methylotrophic bacteria.  相似文献   

7.
V L Davidson  M A Kumar  J Y Wu 《Biochemistry》1992,31(5):1504-1508
Methanol dehydrogenase activity, when assayed with phenazine ethosulfate (PES) as an electron acceptor, was inhibited by superoxide dismutase (SOD) and by Mn2+ only under aerobic conditions. Catalase, formate, and other divalent cations did not inhibit the enzyme. The enzyme also exhibited significantly higher levels of activity when assayed with PES under anaerobic conditions relative to aerobic conditions. The oxygen- and superoxide-dependent effects on methanol dehydrogenase were not observed when either Wurster's Blue or cytochrome c-55li was used as an electron acceptor. Another quinoprotein, methylamine dehydrogenase, which possesses tryptophan tryptophylquinone (TTQ) rather than pyrroloquinoline quinone (PQQ) as a prosthetic group, was not inhibited by SOD or Mn2+ when assayed with PES as an electron acceptor. Spectroscopic analysis of methanol dehydrogenase provided no evidence for any oxygen- or superoxide-dependent changes in the redox state of the enzyme-bound PQQ cofactor of methanol dehydrogenase. To explain these data, a model is presented in which this cofactor reacts reversibly with oxygen and superoxide, and in which oxygen is able to compete with PES as an electron acceptor for the reduced species.  相似文献   

8.
A cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus reduced nitrite to nitrous oxide in a stoichiometric reaction without nitric oxide as free intermediate. The membrane system had a specific requirement for FMN with NAD(P)H as electron donors. Other electron donors were ascorbate-reduced cytochrome c-551 or phenazine methosulfate. The membrane fraction contained tightly bound cytochrome cd which represented only a small portion of the total cytochrome cd of the cell. As further terminal oxidase cytochrome o was identified. The membrane fraction produced also nitrous oxide from nitric oxide, however, at a substantially lower rate than from nitrite when using ascorbate-reduced phenazine methosulfate as electron donor.  相似文献   

9.
SUCCINATE DEHYDROGENASE (SUCCINATE: phenazine methosulfate oxidoreductase, EC 1.3.99.1) activity in crude mitochondrial fraction from pea (var. Alaska) cotyledons increased during seed imbibition to reach a maximum after about 12 hours. The increase was not inhibited by either cycloheximide or d(-)threo-chloramphenicol. The postmicrosomal fraction from dry cotyledons, but not that from fully imbibed ones, contained a soluble form of succinate dehydrogenase. The soluble enzyme was partially purified by ammonium sulfate fractionation and diethylaminoethyl-cellulose and Sepharose 6B column chromatography. The enzyme showed no succinate-coenzyme Q oxidoreductase activity and had a molecular mass of about 100,000 daltons. The soluble enzyme seemed to differ only slightly from succinate dehydrogenase solubilized from the mitochondrial inner membrane from fully imbibed cotyledons by a detergent. It is proposed that the soluble succinate dehydrogenase is associated with an inert mitochondrial inner membrane in dry cotyledons to form an active one during seed imbibition.  相似文献   

10.
A new polyvinyl alcohol (PVA)-degrading bacterium was isolated from activated sludge sampled during a waste water treatment process and identified as Sphingomonas sp. Its PVA oxidase activity and alcohol dehydrogenase activity for various low-molecular-weight secondary alcohols were detected. Both activities were associated with cells of the degrader, and they were not extracellular. Under optimal conditions, the isolate was able to degrade 500 mg of PVA per litre in 2 weeks. The strain required pyrroloquinoline quinone (PQQ) and another growth factor, the later could be supplied by a co-isolated Rhodococcus erythropolis strain. The findings stressed the complex nature of environmental PVA degradation and proved that other factors different from PQQ could be important in symbiotic biodegradation of PVA with some sphingomonads.  相似文献   

11.
An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested. Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2,6-dichlorophenol-indophenol. 2,3-Dimethoxy-5-methyl-1,4-benzoquinone, a precursor of the naturally occurring electron acceptor ubiquinone, readily interacts with the enzyme in micromolar concentrations. Typical flavoenzyme inhibitors such as acriflavine and diphenyleneiodonium inhibited this enzyme activity. Presence of the flavin cofactor in the enzyme was confirmed by differential pulse polarography and by measuring the fluorescence emission spectrum. Possible existence of a second redox centre is discussed.  相似文献   

12.
L-Pipecolic acid oxidation was studied in the rabbit and cynomolgus monkey. Tissue homogenates from both species incubated with L-[2,3,4,5,6-3H]pipecolic acid produced a single radioactive product identified as alpha-aminoadipic acid. In the rabbit, L-pipecolic acid oxidation was greatest in kidney cortex with progressively lesser specific activities in liver, heart, and brain. When rabbit kidney cortex was fractionated by differential centrifugation or on Percoll gradients, activity paralleled that of the mitochondrial marker, glutamate dehydrogenase. In sonicated mitochondria, 92% of the activity was in the soluble fraction. Activity was inhibited by both rotenone and antimycin A and was maximal when FAD, phenazine ethosulfate, and glycerol were included in the assay; Km,app was 0.74 +/- 0.16 mM. Nipecotic acid, piperidine, and cis-2,4-piperidine dicarboxylic acid did not inhibit L-pipecolic acid oxidation, while L-proline had a Ki greater than or equal to 10 mM. D-Alanine and kojic acid, substrate and inhibitor of D-amino acid oxidase, respectively, were also not inhibitory. When monkey kidney cortex was fractionated on Percoll gradients, L-pipecolic acid oxidation activity paralleled that of the peroxisomal marker, catalase. After organellar subfractionation, the activity was membrane-associated and maximal at pH 8.5; Km,app was 4.22 +/- 0.30 mM. L-Pipecolic acid oxidation produced hydrogen peroxide, suggesting involvement of an oxidase in alpha-aminoadipic acid formation. Antimycin A did not inhibit the reaction. No specific cofactor requirements were identified and phenazine ethosulfate inhibited the reaction. D-Pipecolic acid, L-proline, and the other compounds cited above did not significantly inhibit the activity.  相似文献   

13.
D-Fructose dehydrogenase was solubilized and purified from the membrane fraction of glycerol-grown Gluconobacter industrius IFO 3260 by a procedure involving solubilization of the enzyme with Triton X-100 and subsequent fractionation on diethylaminoethyl-cellulose and hydroxylapatite columns. The purified enzyme was tightly bound to a c-type cytochrome and another peptide existing as a dehydrogenase-cytochrome complex. The purified enzyme was deemed pure by analytical ultracentrifugation as well as by gel filtration on a Sephadex G-200 column. The molecular weight of the enzyme complex was determined to be about 140,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of three components having molecular weights of 67,000 (dehydrogenase), 50,800 (cytochrome c), and 19,700 (unknown function). Only D-fructose was readily oxidized by the enzyme in the presence of dyes such as ferricyanide, 2,6-dichlorophenolindophenol, or phenazine methosulfate. Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and oxygen did not function as electron acceptors. The optimum pH of D-fructose oxidation was 4.0. The enzyme was stable at pH 4.5 to 6.0 Stability of the purified enzyme was much enhanced by the presence of detergent in the enzyme solution. Removal of detergent from the enzyme solution facilitated the aggregation of the enzyme and caused its inactivation. An apparent Michaelis constant for D-fructose was observed to be 10(-2) M with the purified enzyme. D-Fructose dehydrogenase was shown to be a satisfactory reagent for microdetermination of D-fructose.  相似文献   

14.
Solubilization of membrane-bound quinoprotein D-arabitol dehydrogenase (ARDH) was done successfully with the membrane fraction of Gluconobacter suboxydans IFO 3257. In enzyme solubilization and subsequent enzyme purification steps, special care was taken to purify ARDH as active as it was in the native membrane, after many disappointing trials. Selection of the best detergent, keeping ARDH as the holoenzyme by the addition of PQQ and Ca2+, and of a buffer system involving acetate buffer supplemented with Ca2+, were essential to treat the highly hydrophobic and thus labile enzyme. Purification of the enzyme was done by two steps of column chromatography on DEAE-Toyopearl and CM-Toyopearl in the presence of detergent and Ca2+. ARDH was homogenous and showed a single sedimentation peak in analytical ultracentrifugation. ARDH was dissociated into two different subunits upon SDS-PAGE with molecular masses of 82 kDa (subunit I) and 14 kDa (subunit II), forming a heterodimeric structure. ARDH was proven to be a quinoprotein by detecting a liberated PQQ from SDS-treated ARDH in HPLC chromatography. More preliminarily, an EDTA-treated membrane fraction lost the enzyme activity and ARDH activity was restored to the original level by the addition of PQQ and Ca2+. The most predominant unique character of ARDH, the substrate specificity, was highly versatile and many kinds of substrates were oxidized irreversibly by ARDH, not only pentitols but also other polyhydroxy alcohols including D-sorbitol, D-mannitol, glycerol, meso-erythritol, and 2,3-butanediol. ARDH may have its primary function in the oxidative fermentation of ketose production by acetic acid bacteria. ARDH contained no heme component, unlike the type II or type III quinoprotein alcohol dehydrogenase (ADH) and did not react with primary alcohols.  相似文献   

15.
Escherichia coli was grown under various culture conditions. Variations in the levels of formate dehydrogenase which reacts with methylene blue (MB) or phenazine methosulfate (PMS) (N enzyme), formate dehydrogenase which reacts with benzyl viologen (BV) (H enzyme), formate oxidase and hydrogenlyase were analyzed. It was observed that formate dehydrogenase N and formate oxidase were induced by nitrate and repressed by oxygen. Synthesis of formate dehydrogenase H and hydrogenlyase was induced by formate and repressed by nitrate and oxygen. Selenite was required for the biosynthesis of formate dehydrogenase H and hydrogenlyase. Activity of both formate oxidase and hydrogenlyase was inhibited by azide and KCN but not by N-heptyl hydroxyquinoline-N-oxide (HOQNO); on the other hand, formate oxidase was extremely sensitive to HOQNO. Data were obtained which suggest that cytochromes are not involved in hydrogen formation from formate. Part of this work was carried out when the senior author was visiting Research Biologist in the Laboratory of Dr. J. A. de Mosss at the University of California, San Diego. Thanks are given to Dr. De Moss for his hospitality and advise and to Dr. Warren Butler of the University of California, San Diego for making available his spectrophotometer to carry out cytochrome analyses. Most of this work was sustained by a grant from the Research Corporation, Brown Hazen Fund and the financial help of the C.O.F.A.A. from the Instituto Politécnico Nacional.  相似文献   

16.
Abstract Diglycolic acid dehydrogenase activity linked with 2,6-dichlorophenolindophenol and phenazine methosulfate was found in the particulate fraction of the cell-free extract of a mixed culture of Flavobacterium and Pseudomonas species grown on polyethylene glycol 6000. The amount of glyoxylic acid formed increased with the increase in reaction time and enzyme concentration. Horse heart cytochrome c , 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl 2H-tetrazolium bromide, and nitro blue tetrazolium, served as hydrogen acceptors in the presence of phenazine methosulfate. Enzyme activity was competitively inhibited by 1,4-benzoquinone. The enzyme was also active on tetraethylene glycol dicarboxylic acid, a metabolite of tetraethylene glycol, and on methoxy- or ethoxyacetic acid.  相似文献   

17.
Walter G. Zumft  JosMaria Vega 《BBA》1979,548(3):484-499
A cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus reduced nitrite to nitrous oxide in a stoichiometric reaction without nitric oxide as free intermediate. The membrane system had a specific requirement for FMN with NAD(P)H as electron donors. Other electron donors were ascorbate-reduced cytochrome c-551 or phenazine methosulfate. The membrane fraction contained tightly bound cytochrome cd which represented only a small portion of the total cytochrome cd of the cell. As further terminal oxidase cytochrome o was identified. The membrane fraction produced also nitrous oxide from nitric oxide, however, at a substantially lower rate than from nitrite when using ascorbate-reduced phenazine methosulfate as electron donor.  相似文献   

18.
A quinoprotein catalyzing oxidation of cyclic alcohols was found in the membrane fraction for the first time, after extensive screening among aerobic bacteria. Gluconobacter frateurii CHM 9 was finally selected in this study. The enzyme tentatively named membrane-bound cyclic alcohol dehydrogenase (MCAD) was found to occur specifically in the membrane fraction, and pyrroloquinoline quinone (PQQ) was functional as the primary coenzyme in the enzyme activity. MCAD catalyzed only oxidation reaction of cyclic alcohols irreversibly to corresponding ketones. Unlike already known cytosolic NAD(P)H-dependent alcohol-aldehyde or alcohol-ketone oxidoreductases, MCAD was unable to catalyze the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. MCAD was solubilized and purified from the membrane fraction of the organism to homogeneity. Differential solubilization to eliminate the predominant quinoprotein alcohol dehydrogenase (ADH), and the subsequent two steps of column chromatographies, brought MCAD to homogeneity. Purified MCAD had a molecular mass of 83 kDa by SDS-PAGE. Substrate specificity showed that MCAD was an enzyme oxidizing a wide variety of cyclic alcohols. Some minor enzyme activity was found with aliphatic secondary alcohols and sugar alcohols, but not primary alcohols, differentiating MCAD from quinoprotein ADH. NAD-dependent cytosolic cyclic alcohol dehydrogenase (CCAD) in the same organism was crystallized and its catalytic and physicochemical properties were characterized. Judging from the catalytic properties of CCAD, it was apparent that CCAD was distinct from MCAD in many respects and seemed to make no contributions to cyclic alcohol oxidation.  相似文献   

19.
A modification of the assays for isocitrate and malate dehydrogenase, using phenazine methosulphate and 2,6-dichlorophenolindophenol, permits measurements on cell-free extracts. Phenazine methosulfate at concentrations higher than 30 nmoles/3 ml prevents the accumulation of NADPH or NADH and thus reduces errors due to endogenous oxidation of these compounds. The use of 2,6-dichlorophenolindophenol rather than a tetrazolium salt as the terminal electron acceptor allows continuous spectrophotometric measurement of enzyme activities.Assay for NADP-specific isocitrate dehydrogenase can be performed in aerobic or anaerobic conditions. Assays for malate dehydrogenase should be run under anaerobic conditions because of the interference by oxygen on the phenazine methosulfate mediated reduction of 2,6-dichlorophenolindophenol by NADH. Under anaerobic conditions, where NADH oxidase is inoperative, the phenazine methosulfate/dichlorophenolindophenol assay is more sensitive than the assay using direct measurement of NADH at 340 nm.  相似文献   

20.
Bacteria which grow on 1,5-anhydro-D-glucitol (AG) were isolated from soil. One such strain showing the highest AG-assimilating activity was further characterized and identified as a new strain of the Pseudomonas family (named Pseudomonas sp. NK-85001). A subcellular membranous fraction obtained from this strain catalyzed the oxidation of AG to 1,5-anhydro-D-fructose. This oxidation reaction consumed molecular oxygen as the terminal electron acceptor. The AG-oxidizing activity was further purified after solubilization. The AG oxidation catalyzed by this solubilized enzyme utilized molecular oxygen only in the presence of an electron mediator such as 2,6-dichlorophenolindophenol or phenazine methosulfate. Thus, the enzyme was suggested to be a dehydrogenase rather than an oxidase. The solubilized enzyme preparation also showed a strict substrate specificity. The observed specificity indicated that application of the enzyme for AG assay in clinical samples might be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号