首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Zhou  V M Richon  L Ngo  R A Rifkind  P A Marks 《Gene》1999,233(1-2):13-19
Hybrid polar compounds (HPCs), such as suberoylanilide hydroxamic acid (SAHA), induce differentiation of transformed cells. Differential display of RNA was used to identify genes whose expression is changed during SAHA-induced differentiation of murine erythroleukemia (MEL) cells. One such cDNA was identified whose mRNA level decreased by 50% after 8h of SAHA treatment as determined by Northern blot analysis. The full-length cDNA (1944bp in length) was cloned by sequencing of an EST clone and rapid amplification of 5' cDNA ends (5'-RACE). The predicted amino acid sequence is 589 amino acids and shares 45% identity with the yeast cytoplasmic phenylalanyl tRNA synthetase (PheRS) regulatory alpha-subunit. Human EST clones which share over 90% identity of predicted amino acid sequence with this cDNA map to chromosome 2 near the paired box homeotic gene 3 (PAX3) locus, a region syngenic to mouse chromosome 1. This is the first report of the cloning of the full-length cDNA for the murine PheRS regulatory alpha-subunit-like protein. The level of PheRS alpha-subunit-like mRNA is regulated during differentiation but not during cell cycle progression.  相似文献   

2.
Hybrid polar compounds (HPCs) are powerful inducers of terminal differentiation of various types of tumors, including Friend murine erythroleukemia cells (MELCs). They are known to act synergistically with an increase in the extracellular concentration of cations, which causes a positive shift in the negative value of the ionic surface potential. Two HPCs, hexamethylenebisacetamide (HMBA) and suberoylanilide hydroxamic acid (SAHA), were adsorbed on self-assembled phospholipid monolayers supported on a mercury drop and the shift in the surface dipole potential chi of the lipid film due to their adsorption was estimated from charge measurements. At their optimal concentrations for inducing MELC terminal differentiation (5 mM for HMBA and 2.6 microM for SAHA), these HPCs cause a chi shift of about 15-20 mV, positive toward the hydrocarbon tails, both on neutral phosphatidylcholine films and on negatively or positively charged phosphatidylserine films. This strongly suggests that the nonspecific effect of HPCs of different structure in inducing cancer cells to rescue their differentiation program is related to a positive chi shift on the extracellular side of the cell membrane.  相似文献   

3.
Histone deacetylase activity is potently inhibited by hydroaximc acid derivatives such as suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). These inhibitors specifically induce differentiation/apoptosis of transformed cells in vitro and suppress tumor growth in vivo. Because of its low toxicity, SAHA is currently evaluated in clinical trials for the treatment of cancer. SAHA and TSA induce apoptosis, which is characterized by mitochondrial stress, but so far, the critical elements of this apoptotic program remain poorly defined. To characterize in more detail this apoptotic program, we used human cell lines containing alterations in important elements of apoptotic response such as: p53, Bcl-2, caspase-9, and caspase-3. We demonstrate that caspase-9 is critical for apoptosis induced by SAHA and TSA and that efficient proteolytic activation of caspase-2, caspase-8, and caspase-7 strictly depends on caspase-9. Bcl-2 efficiently antagonizes cytochrome c release and apoptosis in response to both histone deacetylase inhibitors. We provide evidences that translocation into the mitochondria of the Bcl-2 family member Bid depends on caspase-9 and that this translocation is a late event during TSA-induced apoptosis. We also demonstrate that the susceptibility to TSA- and SAHA-induced cell death is regulated by p53.  相似文献   

4.
5.
Gallbladder carcinoma is an aggressive malignancy with high mortality mainly due to the limited potential for curative resection and its resistance to chemotherapeutic agents. Here, we show that the histone deacetylase inhibitors (HDACIs) trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA) reduce the proliferation and induce apoptosis of gallbladder carcinoma cells by suppressing the AKT/mammalian target of rapamycin (mTOR) signaling. Gallbladder carcinoma SGC-996 cells were treated with different concentrations of TSA and SAHA for different lengths of time. Cell proliferation and morphology were assessed with MTT assay and microscopy, respectively. Cell cycle distribution and cell apoptosis were analyzed with flow cytometry. Western blotting was used to detect the proteins related to apoptosis, cell cycle, and the AKT/mTOR signaling pathway. Our data showed that TSA and SAHA reduced SGC-996 cell viability and arrested cell cycle at the G1 phase in a dose- and time-dependent manner. TSA and SAHA promoted apoptosis of SGC-996 cells, down-regulated the expression of cyclin D1, c-Myc and Bmi1, and decreased the phosphorylation of AKT, mTOR p70S6K1, S6 and 4E-BP1. Additionally, the mTOR inhibitor rapamycin further reduced the cell viability of TSA- and SAHA-treated SGC-996 cells and the phosphorylation of mTOR, whereas the mTOR activator 1,2-dioctanoyl-sn-glycero-3-phosphate (C8-PA) exerted the opposite influence. Our results demonstrate that histone deacetylase inhibitors (HDACIs) suppress the proliferation of gallbladder carcinoma cell via inhibition of AKT/mTOR signaling. These findings offer a mechanistic rationale for the application of HDACIs in gallbladder carcinoma treatment.  相似文献   

6.
Starting from asymmetric Thiele's acid derivatives, two different imaging probes [(99m) Tc(CO)(3) (CpR)] (R=potential targeting vector) are generated simultaneously in one-pot and from one substrate. This extends the previously introduced labeling strategy of metal-mediated retro-Diels?Alder reaction with HCp-R dimers. We demonstrate that chemically active functionalities such as hydroxamic acids are not following this labeling strategy. Adopting the principle of replacing phenyl rings by [Re(CO)(3) (Cp)] entities, potent histone deacetylase (HDAC)-inhibiting Re analogs of suberoylanlilide hydroxamic acid (SAHA; N-hydroxy-N'-phenyloctanediamide) were synthesized and characterized. Cytotoxic evaluation on different tumor cell lines revealed low IC(50) values [μM] for these compounds, comparable to their purely organic congeners.  相似文献   

7.
8.
In order to find novel nonhydroxamate histone deacetylase (HDAC) inhibitors, a series of thiol-based compounds modeled after suberoylanilide hydroxamic acid (SAHA) was synthesized, and their inhibitory effect on HDACs was evaluated. Compound 6, in which the hydroxamic acid of SAHA was replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA.  相似文献   

9.
10.
11.
Histone deacetylase (HDAC) inhibitors are novel anticancer reagents that have recently been reported to have anti-inflammatory and neuroprotective effects; however, the mechanisms underlying their activities are largely undefined. The data from this study show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can protect L929 cells from TNFα-induced necroptosis. This effect involves multiple mechanisms, including the upregulation of cFLIPL expression, the enhanced activation of NFκB and p38 MAPK, and the inactivation of JNK. In addition, SAHA could initiate cell autophagy by inhibiting Akt and mTOR, which also play important roles in protecting cells from necroptosis. Because cell necroptosis is important for inflammation-related deterioration and neurodegenerative disease, our results indicate that preventing cell necrosis may be an important mechanism through which HDAC inhibitor compounds exert their anti-inflammatory or neuroprotective effects.  相似文献   

12.
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.  相似文献   

13.
In order to find novel non-hydroxamate histone deacetylase (HDAC) inhibitors, we synthesized several suberoylanilide hydroxamic acid (SAHA)-based compounds designed on the basis of the catalytic mechanism of HDACs. Among these compounds, 5b was found to be as potent as SAHA. Kinetic enzyme assays and molecular modeling suggested that the mercaptoacetamide moiety of 5b interacts with the zinc in the active site of HDACs and removes a water molecule from the reactive site of the deacetylation.  相似文献   

14.
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using “click” chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure–activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.  相似文献   

15.
Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy, and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells. Suberoylanilide hydroxamic acid (SAHA) has emerged as an effective anticancer therapeutic agent and was recently approved by the FDA for the treatment of advanced cutaneous T-cell lymphoma. In our previous study, we reported the development of the novel, potent, selenium-containing HDAC inhibitors (SelSA-1 and SelSA-2). In this study, the effects of SelSA-1 and SelSA-2 on signaling pathways and cytotoxicity were compared with the known HDAC inhibitor, SAHA, in lung cancer cell lines. After 24 h of treatment, SelSA-1 and SelSA-2 inhibited lung cancer cell growth to a greater extent than SAHA in a dose-dependent manner with IC50 values at low micromolar concentrations. SelSA-1 and SelSA-2 inhibited ERK and PI3K-AKT signaling pathways while simultaneously increasing in autophagy in A549 cells in a time dependent manner. This preliminary study demonstrates the effectiveness of the selenium-containing analogs of SAHA, SelSA-1, and SelSA-2, as HDAC inhibitors and provides insight into the improvement and/or development of these analogs as a therapeutic approach for the treatment of lung cancer.  相似文献   

16.
17.
18.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   

19.
Overexpression of the oncogene c-Myc sensitizes many apoptotic signals through the activation of mitochondrial apoptosis pathway. However, the underling mechanism has not been clearly defined. Here, we investigated the effect of c-Myc expression on histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)-induced apoptosis in rat fibroblast cells possessing various c-Myc levels. In Rat 1a cells overexpressing c-Myc, SAHA-induced enhanced the cell death response relative to the parental cells; whereas Rat 1a cells lacking c-Myc were refractory to SAHA treatment. We demonstrated that SAHA selectively induced the expression of pro-apoptotic BH3-only protein Bim, leading to Bax activation in c-Myc-expressing cells. Where c-Myc was absent, Bim, despite its induction by SAHA, failed to activate Bax and was unable to induce apoptosis. These results indicate that c-Myc is dispensable for Bim induction by SAHA, but is required for subsequent Bax activation. We further show that the expression levels of anti-apoptotic Bcl-2/Bcl2-xL were much elevated in Myc-null cells compared with the c-Myc-expressing cells; furthermore, depletion of Bcl-2/Bcl-xL in these cells restored the ability of SAHA to induce apoptosis by enhancing Bax activation. These data indicate that SAHA induces apoptosis through Bim-triggered Bax activation and that c-Myc regulates this process by modulating Bcl-2/Bcl-xL. Our results provide novel insight into the mechanism whereby Myc sensitizes the apoptotic signals; furthermore, our data suggest that cancer cells with deregulated Myc might be more sensitive to SAHA treatment.  相似文献   

20.
Histone deacetylase inhibitors are promising chemotherapeutic agents and some are in clinical trials. Several molecular mechanisms have been invoked to describe their effects on cancer cells in vivo and in vitro. Autophagy has been observed in response to several anticancer reagents and has been demonstrated to be responsible for cell death. However, the exact mechanism of this phenomenon is still not clear. Here we demonstrated that suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces nonapoptotic cell death with several specific features characteristic of autophagy in Hela S3 cells. Suberoylanilide hydroxamic acid inhibits the activity of the mammalian target of rapamycin, a negative regulator of macroautophagy which induces the formation of autophagosomes in a Beclin 1- and autophagy-related 7-dependent manner. This process is mediated by Akt and tuberous sclerosis 2 as is demonstrated by inhibition by continuous active Akt plasmid transfection and RNA interference of tuberous sclerosis 2. Our data provide the first evidence that suberoylanilide hydroxamic acid induces autophagy in Hela S3 cells through interference with the mammalian target of rapamycin signaling pathway. These findings suggest that suberoylanilide hydroxamic acid may induce autophagic cancer cell death via its specific pathway, and invite further investigation into the detailed mechanism of this pathway to explore this compound's full potential as a chemotherapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号