首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We used equilibrium dialysis to measure the osmotic pressure of chondroitin sulphate (CS) solutions as a function of their concentration and fixed charge density (FCD) and the ionic strength and composition of the solution. Osmotic pressure varied nonlinearly with the concentration of chondroitin sulphate and in 0.15 M NaCl at FCDs typical of uncompressed cartilage (approximately 0.4 mmol/g extrafibrillar H2O) was approximately 3 atmospheres. Osmotic pressure fell by 60% as solution ionic strength increased up to about 1 M, but remained relatively constant at higher ionic strengths. The ratio of Ca2+ to Na+ in the medium was a minor determinant of osmotic pressure. The data are compared with a theoretical model of the electrostatic contribution to osmotic pressure calculated from the Poisson-Boltzmann equation using a rod-in-cell model for CS. The effective radius of the polyelectrolyte rod is taken as a free parameter. The model qualitatively reproduces the non-linear concentration dependence, but underestimates the osmotic pressure by an amount that is independent of ionic strength. This difference, presumably arising from oncotic and entropic effects, is approximately 1/3 of the total osmotic pressure at physiological polymer concentrations and ionic strength.  相似文献   

2.
Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.  相似文献   

3.
The nanostructure and nanomechanical properties of aggrecan monomers extracted and purified from human articular cartilage from donors of different ages (newborn, 29 and 38 year old) were directly visualized and quantified via atomic force microscopy (AFM)-based imaging and force spectroscopy. AFM imaging enabled direct comparison of full length monomers at different ages. The higher proportion of aggrecan fragments observed in adult versus newborn populations is consistent with the cumulative proteolysis of aggrecan known to occur in vivo. The decreased dimensions of adult full length aggrecan (including core protein and glycosaminoglycan (GAG) chain trace length, end-to-end distance and extension ratio) reflect altered aggrecan biosynthesis. The demonstrably shorter GAG chains observed in adult full length aggrecan monomers, compared to newborn monomers, also reflects markedly altered biosynthesis with age. Direct visualization of aggrecan subjected to chondroitinase and/or keratanase treatment revealed conformational properties of aggrecan monomers associated with chondroitin sulfate (CS) and keratan sulfate (KS) GAG chains. Furthermore, compressive stiffness of chemically end-attached layers of adult and newborn aggrecan was measured in various ionic strength aqueous solutions. Adult aggrecan was significantly weaker in compression than newborn aggrecan even at the same total GAG density and bath ionic strength, suggesting the importance of both electrostatic and non-electrostatic interactions in nanomechanical stiffness. These results provide molecular-level evidence of the effects of age on the conformational and nanomechanical properties of aggrecan, with direct implications for the effects of aggrecan nanostructure on the age-dependence of cartilage tissue biomechanical and osmotic properties.  相似文献   

4.
5.
6.
The distributions and diffusivities of Na+, Ca2+ and Cl- in chondroitin sulphate (CS), hyaluronate (HA) and proteoglycan solutions were measured using equilibrium dialysis and a capillary tube method. Measurements were made for a range of glycosaminoglycan (GAG) concentrations up to those normally found in dense connective tissue (10% CS, 2.5% HA), ionic strengths up to normal physiological concentrations (0.15 M) and for different combinations of monovalent and divalent cations. The partition coefficients, Ki, of the positive ions increased with increasing matrix concentration and with decreasing ionic strength but with one exception the selectivity coefficient KCaNa = square root of KCa/KNa was close to unity, indicating nearly ideal Donnan distributions. The ionic diffusivities decreased very much like those of small neutral solutes with increasing matrix concentration and with one exception were relatively independent of ionic strength, The exception in both cases was low matrix concentrations and low ionic strengths for which the diffusivity of Ca2+ was an order of magnitude lower and selectivity coefficients were approximately 2. We conclude that at physiological ionic strengths and GAG concentrations the distributions of small ions are determined by simple electrostatic interactions, without binding or condensation, and the diffusivities are not affected by the electrostatic field.  相似文献   

7.
Aggrecan possesses both chondroitin sulfate (CS) and keratan sulfate (KS) chains attached to its core protein, which reside mainly in the central region of the molecule termed the glycosaminoglycan-attachment region. This region is further subdivided into the KS-rich domain and two adjacent CS-rich domains (CS1 and CS2). The CS1 domain of the human is unique in exhibiting length polymorphism due to a variable number of tandem amino acid repeats. The focus of this work was to determine how length polymorphism affects the structure of the CS1 domain and whether CS and KS chains can coexist in the different glycosaminoglycan-attachment domains. The CS1 domain possesses several amino acid repeat sequences that divide it into three subdomains. Variation in repeat number may occur in any of these domains, with the consequence that CS1 domains of the same length may possess different amino acid sequences. There was no evidence to support the presence of KS in either the CS1 or the CS2 domains nor the presence of CS in the KS-rich domain. The structure of the CS chains was shown to vary between the CS1 and CS2 domains, particularly in the adult, with variation occurring in chain length and the sulfation of the non-reducing terminal N-acetyl galactosamine residue. CS chains in the adult CS2 domain were shorter than those in the CS1 domain and possessed disulfated terminal residues in addition to monosulfated residues. There was, however, no change in the sulfation pattern of the disaccharide repeats in the CS chains from the two domains.  相似文献   

8.
Vuong TT  Prydz K  Tveit H 《Glycobiology》2006,16(4):326-332
Serglycin with a green fluorescent protein tag (SG-GFP) expressed in epithelial Madin-Darby canine kidney cells is secreted mainly (85%) into the apical medium, but the glycosaminoglycan (GAG) chains on the SG-GFP protein core secreted basolaterally (15%) carry most of the sulfate added during biosynthesis (Tveit et al. (2005) J. Biol. Chem., 280, 29596-29603). Here we report further differences in apical and basolateral GAG synthesis. The less intensely sulfated chondroitin sulfate (CS) chains on apically secreted SG-GFP are longer than CS chains attached to basolateral SG-GFP, whereas the heparan sulfate (HS) chains are of similar lengths. When the supply of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is limited by chlorate treatment, the synthesis machinery maintains sulfation of HS chains on basolateral SG-GFP until it is inhibited at 50 mM chlorate, whereas basolateral CS chains lose sulfate already at 12.5 mM chlorate and become longer. Apically, incorporation of 35S-sulfate into CS is reduced to a lesser extent at higher chlorate concentrations than basolateral CS, although apical CS is less intensely sulfated than basolateral CS in control cells. Similar to what was found for basolateral HS, sulfation of apical HS was not reduced at chlorate concentrations below 50 mM. Also, protein-free, xyloside-based GAG chains secreted basolaterally are more intensely sulfated than their apical counterpart, supporting the view that separate apical and basolateral pathways exist for GAG synthesis and sulfation. Introduction of benzyl beta-d-xyloside (BX) to the GAG synthesis machinery reduces the apical secretion of SG-GFP dramatically and also the modification of SG-GFP by HS.  相似文献   

9.
The stability of the filament lattice in relaxed striated muscle can be viewed as a balance of electrostatic and van der Waals forces. The simplest electrostatic model, where actin and myosin filaments are treated as charged cylinders, generates reasonable lattice spacings for skinned fibers. However, this model predicts excessive radial stiffness under osmotic pressure and cannot account for the initial pressure (∼1 kPa) required for significant compression. Good agreement with frog compression data is obtained with an extended model, in which S1 heads are weakly attached to actin when the lattice spacing is reduced below a critical value; further compression moves fixed negative charges on the heads closer to the myofilament backbone as they attach at a more acute angle to actin. The model predicts pH data in which the lattice shrinks as pH is lowered and protons bind to filaments. Electrostatic screening implies that the lattice shrinks with increasing ionic strength, but the observed expansion of the frog lattice at ionic strengths above 0.1 M with KCl might be explained if Cl binds to sites on the motor domain of S1. With myosin-myosin and actin-actin interactions, the predicted lattice spacing decreases slightly with sarcomere length, with a more rapid decrease when actin-myosin filament overlap is very small.  相似文献   

10.
The comparative effect of cholesterol (CH) versus cholesterol sulfate (CS) on dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by optical microscopy, freeze-fracture electron microscopy, x-ray diffraction, and solid state 2H and 31P nuclear magnetic resonance (NMR). The sulfate analogue extends the lamellar phase domain toward high water contents, and substitution of 30 mol % CH by CS in DMPC lamellae induces the trapping of 30 wt % additional water. The greater swelling of the CS-containing systems is evidenced by determination of lamellar repeat distances at maximal hydration: 147 +/- 4 A and 64 +/- 2 A in the presence of CS and CH, respectively. 2H-NMR of heavy water demonstrates that CS binds approximately 12 more water molecules at the interface than CH whereas NMR of deuterium-labeled DMPC chains reveals that 30 mol % CS orders the membrane as 15 mol % CH at high temperature and disorders much more than CH at low temperatures. The various effects of CS versus CH are discussed by taking into account attractive Van der Waals forces and repulsive steric/electrostatic interactions of the negatively charged sulfate group.  相似文献   

11.
Chondroitin sulfate (CS) and dermatan sulfate (DS) interact with various extracellular molecules such as growth factors, cytokines/chemokines, neurotrophic factors, morphogens, and viral proteins, thereby playing roles in a variety of biological processes including cell adhesion, proliferation, tissue morphogenesis, neurite outgrowth, infections, and inflammation/leukocyte trafficking. CS/DS are modified with sulfate groups at C-2 of uronic acid residues as well as C-4 and/or C-6 of N-acetyl-D-galactosamine residues, yielding enormous structural diversity, which enables the binding with numerous proteins. We have demonstrated that highly sulfated CS-E from squid cartilage, for example, interacts with heparin-binding proteins including midkine, pleiotrophin, and fibroblast growth factors expressed in brain with high affinity (Kd values in the nM range). Here, we analyzed the binding of CS and DS, which have a relatively low degree of sulfation and have been widely used as a nutraceutical and a drug for osteoarthritis etc., with a number of heparin-binding neurotrophic factors/cytokines using surface plasmon resonance (SPR) and structurally characterized the CS/DS chains. SPR showed that relatively low sulfated CS-A, DS, and CS-C also bound with significant affinity to midkine, pleiotrophin, hepatocyte growth factor, monokine-induced by interferon-γ, and stromal cell derived factor-1β, although the binding was less intense than that with highly sulfated CS-D and CS-E. These findings suggest that even low sulfated CS and/or DS chains may contain binding domains, which include fine sugar sequences with specific sulfation patterns, and that sugar sequences, conformations and electrostatic potential are more important than the simple degree of sulfation represented by disaccharide composition.  相似文献   

12.
Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage oligosaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K(m) values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specifity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.  相似文献   

13.
The nature of chiral interactions among chiral biopolymers, such as DNA, protein alpha-helices, and rodlike virus particles, remains elusive. In particular, a satisfactory model connecting molecular chiral interactions and the pitch of the resulting chiral mesophases is lacking. We report the measurement of short-fragment (146-bp) DNA cholesteric spherulite pitch as a function of osmotic pressure, average DNA interaxial spacing, and salt concentration. We determined cholesteric pitch and interaxial spacing by polarizing optical microscopy and x-ray scattering, respectively, from which the twist-angle between DNA molecules can be calculated. Surprisingly, we found that decreasing ionic strength resulted in weaker chiral interactions between DNA chains, as evidenced by the decrease in the twist-angle, and consequent increase in the cholesteric pitch, for a fixed interaxial spacing. We propose that this behavior can be explained by increased smearing-out of the helical charge pattern along DNA as the Debye screening length is increased.  相似文献   

14.
The elastic behavior of mechanically skinned skeletal muscle fibers in relaxing solution is modelled using equations developed by Flory (1953) for the elasticity of non-biological polymers. Mechanically, the relaxed skinned fiber is considered to be a semi-crystalline network of inextensible polymer chains, which are periodically cross-linked and which are bathed in an aqueous medium. We consider (1) configurational elastic forces in the network, (2) entropic forces due to mixing of polymer and water, (3) electrostatic forces due to fixed charges on the muscle proteins and mobile charges in the bathing solution, and (4) compressive forces due to large colloids in the bathing solution. Van der Waals forces are not considered since calculations show that they are probably negligible under our conditions. We derive an expression which relates known quantities (ionic strength, osmotic compressive pressure, and fiber width), experimentally estimated quantities (fixed charge density and volume fraction of muscle proteins), and derived quantities (concentration of cross-links and a parameter reflecting the interaction energy between protein and water).The model was tested by comparison with observed changes in skinned fiber width under a variety of experimental conditions which included changes in osmotic compressive pressure, pH, sarcomere length, and ionic strength. Over a wide range of compressive pressure (0–36 atm) the theory predicted the nonlinear relation between fiber width and logarithm of pressure. The direction and magnitude of the decrease in width when pH was decreased to 4 could be modelled asssuming the fixed charge density on the protein network was 0.34 moles of electrons per liter protein, a value in accordance with the estimates of others. The relation between width and sarcomere length over the complete range of compressive pressures could be modelled with the assumption that the number of cross-links increases somewhat with sarcomere length. Changes of width with ionic strength were modelled assuming that increasing salt concentration both increased the electrostatic shielding of fixed charges and decreased the number of cross-links. The decrease of fiber width in 1% glutaraldehyde was modelled by assuming that the concentration of crosslinks increased by some 10%. The theory predicted the order of magnitude but not the detailed shape of the passive tension-length relation which may indicate that, as with non-biological polymers, the theory does not adequately describe the behavior of semi-crystalline networks at high degrees of deformation.In summary, the theory provides a semiquantitative approach to an understanding of the nature and relative magnitudes of the forces underlying the mechanical behavior of relaxed skinned fibers. It indicates, for instance, that when fibers are returned to near their in vivo size with 3% PVP, the forces in order of their importance are: ¦ elastic forces ¦ ¦ entropic forces > ¦ electrostatic forces ¦ ¦ osmotic compressive forces ¦.  相似文献   

15.
Effects of intracellular ionic strength on the isotonic contraction properties of both intact fibers and skinned fibers give insights into the cross-bridge mechanism, but presently there is fundamental disagreement in the results on the two fiber preparations. This paper, which studies the effects on contraction of varying the osmotic pressure of the bathing medium with impermeant and permeant solutes, explains the above controversy and establishes the physiological significance of the previous results on skinned fibers. Fast-twitch fibers, isolated singly from tibialis and semitendinosus muscles of frogs, were activated by a temperature-jump technique in hyperosmotic solutions with either 100 or 150 mM sucrose (impermeant), or 50 or 75 mM KCl (permeant). Intracellular ionic strength was expected to rise in these solutions from the standard value of approximately 190 to 265 mM. Cell volume and the speed of unloaded shortening both decreased with sucrose and were constant with KCl. On the other hand, isometric force decreased equally with equiosmolar addition of either solute; this is additional evidence that contractile force decreases with ionic strength and is independent of fiber volume. Therefore, for the main cross-bridges, force per bridge is constant with changes in the lateral separation between the myofilaments. The next finding, that at a fixed cell volume the contraction speed is constant with KCl, provides clear evidence in intact fibers that the intrinsic speed of shortening is insensitive to increased ionic strength. The data with KCl are in agreement with the results on skinned fibers. The results suggest that in the cross-bridge kinetics in vivo the rate-limiting step is different for force than that for shortening. On the other hand, the decrease in speed with sucrose is associated with the shrinkage in cell volume, and is explained by the possibility of an increased internal load. A major fraction of the internal load may arise from unusual interactions between the sliding filaments; these interactions are enhanced in the fibers compressed with sucrose, but this does not affect the intrinsic kinetics of the main cross-bridges.  相似文献   

16.
We previously reported that versican, a large chondroitin/dermatan sulfate (CS/DS) proteoglycan, interacts through its CS/DS chains with adhesion molecules L- and P-selectin and CD44, as well as chemokines. Here, we have characterized these interactions further. Using a metabolic inhibitor of sulfation, sodium chlorate, we show that the interactions of the CS/DS chains of versican with L- and P-selectin and chemokines are sulfation-dependent but the interaction with CD44 is sulfation-independent. Consistently, versican's binding to L- and P-selectin and chemokines is specifically inhibited by oversulfated CS/DS chains containing GlcAbeta1-3GalNAc(4,6-O-disulfate) or IdoAalpha1-3GalNAc(4,6-O-disulfate), but its binding to CD44 is inhibited by all the CS/DS chains, including low-sulfated and unsulfated ones. Affinity and kinetic analyses using surface plasmon resonance revealed that the oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) bind directly to selectins and chemokines with high affinity (K(d) 21.1 to 293 nm). In addition, a tetrasaccharide fragment of repeating GlcAbeta1-3GalNAc(4,6-O-disulfate) units directly interacts with L- and P-selectin and chemokines and oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) inhibit chemokine-induced Ca(2+) mobilization. Taken together, our results show that oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) are recognized by L- and P-selectin and chemokines, and imply that these chains are important in selectin- and/or chemokine-mediated cellular responses.  相似文献   

17.
In this study, we have measured the nanoscale compressive interactions between opposing aggrecan macromolecules in near-physiological conditions, in order to elucidate the molecular origins of tissue-level cartilage biomechanical behavior. Aggrecan molecules from fetal bovine epiphyseal cartilage were chemically end-grafted to planar substrates, standard nanosized atomic force microscopy (AFM) probe tips (R(tip) approximately 50 nm), and larger colloidal probe tips (R(tip) approximately 2.5 microm). To assess normal nanomechanical interaction forces between opposing aggrecan layers, substrates with microcontact printed aggrecan were imaged using contact mode AFM, and aggrecan layer height (and hence deformation) was measured as a function of solution ionic strength (IS) and applied normal load. Then, using high-resolution force spectroscopy, nanoscale compressive forces between opposing aggrecan on the tip and substrate were measured versus tip-substrate separation distance in 0.001-1M NaCl. Nanosized tips enabled measurement of the molecular stiffness of 2-4 aggrecan while colloidal tips probed the nanomechanical properties of larger assemblies (approximately 10(4) molecules). The compressive stiffness of aggrecan was much higher when using a densely packed colloidal tip than the stiffness measured for using the nanosized tip with a few aggrecan, demonstrating the importance of lateral interactions to the normal nanomechanical properties. The measured stress at 0.1M NaCl (near-physiological ionic strength) increased sharply at aggrecan densities under the tip of approximately 40 mg/ml (physiological densities are approximately 20-80 mg/ml), corresponding to an average inter-GAG spacing of 4-5 Debye lengths (4-5 nm); this characteristic spacing is consistent with the onset of significant electrostatic interactions between GAG chains of opposing aggrecan molecules. Comparison of nanomechanical data to the predictions of Poisson-Boltzmann-based models further elucidated the regimes over which electrostatic and nonelectrostatic interactions affect aggrecan stiffness in compression. The most important aspects of this study include: the incorporation of experiments at two different length scales, the use of microcontact printing to enable quantification of aggrecan deformation and the corresponding nanoscale compressive stress vs. strain curve, the use of tips of differing functionality to provide insights into the molecular mechanisms of deformation, and the comparison of experimental data to the predictions of three increasingly refined Poisson-Boltzmann (P-B)-based theoretical models for the electrostatic double layer component of the interaction.  相似文献   

18.
19.
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.  相似文献   

20.
Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号