首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Ganglioside composition of rat trigeminal nerve was studied during development in order to understand the changes that occur as a result of cellular differentiation in the nerve. The ganglioside composition of the trigeminal nerve was entirely different from that of brain. The major gangliosides in adult trigeminal nerve were GM3, GD3, and LM1 (sialosyl-lactoneotetraosylceramide or sialosylparagloboside). The structure of LM1 and other gangliosides was established by enzymatic degradation and by analysis of the products of acid hydrolysis. At 2 days after birth, when the Schwann cells were immature, GM3 and GD3 were the major gangliosides in the nerve, 50 and 18 mol %, respectively. As the nerve developed and Schwann cells proliferated and myelinated the axons, the mol % of GM3 and GD3 reduced and that of LM1 steadily increased. Polysialogangliosides did not change drastically with nerve development. The rate of deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids, cerebrosides, and sulfatides; thus, deposition appears to be localized mainly in the rat nerve myelin. LM1 also had long-chain fatty acids 22:0 and 24:0, which are not usually found in CNS gangliosides. The ganglioside pattern of the rat trigeminal nerve was very similar to that of rat sciatic nerve, but was different from that of rabbit and chicken sciatic nerve. The activity of the two key enzymes involved in the metabolism of GM3, viz., CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase and UDP-N-acetylgalactosamine:GM3-N-acetylgalactosaminyltransferase, was also studied during development of the nerve and brain. The developmental profiles of both enzymes were consistent with the amounts of GM3 present in the nerve.  相似文献   

2.
The lipid composition of several teratocarcinoma cell lines has been examined by biochemical and immunological methods in order to identify properties that might be correlated with the state of cell differentiation. The data indicate qualitative and quantitative changes in the phospholipid, cholesterol, and glycolipid composition. In particular, the ratios of cholesterol/phospholipid and of sphingomyelin/phosphatidylcholine are higher in differentiated cells. Gangliosides with short glycosidic chains (GM3 and GD3) are characteristic of undifferentiated, multipotent, embryonal carcinoma cell lines. More complex gangliosides (GM1 and GD1a) appear early during the course of differentiation. Each differentiated cell line presents a unique ganglioside map. Results are tentatively correlated with a stabilization of the membrane bilayer in differentiated cell lines, whereas a more fluid state of the membrane in embryonal carcinoma cell lines would allow maximal flexibility. Subtle differences in ganglioside composition among embryonal carcinoma cell lines are discussed in relation with their potentialities, and their developmental age.  相似文献   

3.
Effects of Cell Density on Lipids of Human Glioma and Fetal Neural Cells   总被引:2,自引:2,他引:0  
Abstract: Gangliosides, phospholipids, and cholesterol of human glioma (12-18) and fetal neural cells (CH) were analyzed at specified cell densities, from sparse to confluent. Total ganglioside sialic acid, phospholipid phosphorus, and cholesterol increased in the glioma cells on a per cell, mg protein, or mg total lipid basis two- to threefold as cell density increased 25-fold. These same three constituents in the fetal cells increased with cell density on a per cell and mg protein basis but not on a per mg total lipid basis. In glioma cells, the di- and trisialogangliosides (GD2+ GDlb+ GT1) increased from 1–2% of total ganglioside sialic acid at sparse densities to 7–8% at intermediate (logarithmic phase) densities to 10–13% at confluent densities. The set of simpler gangliosides (GM4+ GM3+ GM2) decreased from 50% of total ganglioside sialic acid at sparse glioma cell densities, to 36% at intermediate and 30% at confluent densities. In the fetal neural cells, the set of gangliosides (GM4+ GM3+ GM2) had about 48% of total ganglioside sialic acid in both sparse and confluent preparations. The fetal cells were twofold higher in GM3 (32.4 ± 2.1%) than the glioma cells (16.8 ± 1.6%), but lower in GMt (9.1 ± 0.9% versus 18.2 ± 1.8%), cell densities notwithstanding. Confluent cell preparations of both cell lines were consistently higher in ethanolamine plasmalogen than sparse cells. We conclude that in these two neural cell lines quantitative changes in ganglioside and phospholipid species occurred correlatively as cell densities increased. Higher glioma cell densities were associated with greater proportions of complex ganglioside species. These changes in cell membrane constituents during growth may result from cell contact and may indicate a role for them in cell growth regulation and/or differentiation.  相似文献   

4.
The cloned C3H/10T1/2 mouse embryo cells contained a complex pattern of gangliosides. Two cloned chemical transformants obtained from the C3H/10T1/2 cell line by treatment with 7,12-dimethylbenz(a) anthracene (DMBA-TCL1) and 3-methylcholanthrene (MCA-TCL15) also had complex ganglioside patterns; but the transformants had increased levels of the simplest ganglioside, N-acetylneuraminylgalactosylglucosylceramide (GM3), and reduced levels of more complex gangliosides. Incorporation of [14C]glucosamine into gangliosides, as cell-to-cell contact increased in C3H/10T1/2 cells, showed that GM3 synthesis was decreased and that the synthesis of the more complex ganglioside N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GD1a) was increased. In the two transformants the percentage each individual ganglioside was of total labeled gangliosides was only slightly altered with changing cell density. Turnover of [14C]glucosamine-labeled gangliosides, as cell density increased, was approximately equal in C3H/10T1/2 cells and MCA-TCL15 cells, but more rapid in the DMBA-TCL1 cells. Most individual gangliosides turned over at about the same rate in the respective cell lines. However, GD1a increased slightly as a percentage of total labeled gangliosides with increasing cell density in both C3H/10T1/2 cells and transformed cells. The labeling data indicated that the majority of GD1a synthesis was de novo and only a small part occurred by transfer of sialyl or glycosyl residues to simpler gangliosides or catabolism of more complex gangliosides already present in the outer membrane. Exogenous complex gangliosides added to the medium were more effective inhibitors of DMBA-TCL1 cell growth than of C3H/10T1/2 cell growth. Furthermore, gangliosides added to exponentially growing C3H/10T1/2 and DMBA-TCL1 cells caused both cell lines to incorporate a greater percentage of [14C]glucosamine into gangliosides more complex than GM3.  相似文献   

5.
Extracts of cultured skin fibroblasts derived from patients with mucolipidosis IV showed a marked increase and altered distribution of GM3 and GD3 gangliosides. GD3 is elevated 1.5–2 times that of normal whereas GM3 is elevated to a lesser extent. No abnormalities were found in the neutral glycolipids. These two gangliosides apparently comprise most of the accumulated lipid-like material observed on ultrastructural analysis in this disease.  相似文献   

6.
Cloned cells of a myoblast line show the presence of GM3, GM2, GM1 and GD1a gangliosides. The amount of GM3, GM2 and GM1 gangliosides does not vary significantly during the differentiation of myoblasts to myotubes. However, the concentration of GD1a transiently increases almost 3-fold just prior to the fusion of myoblasts and returns to the basal levels in the myotubes. Mutant myoblasts selected for 5-azacytidine resistance and unable to fuse produce only GM3 and traces of GM2. We conclude that GD1a probably participates in the fusion process through yet unknown mechanism.  相似文献   

7.
Ganglioside GM1 beta-galactosidase: studies in human liver and brain   总被引:10,自引:0,他引:10  
A microcolumn assay for ganglioside GM1 β-galactosidase (EC 3.2.1.23) has been developed using GM1 tritiated exclusively in the terminal galactose residue. The reaction is stimulated up to 100-fold by anionic and cationic detergents; this stimulation is inhibited by neutral detergents. 4-Methylumbelliferyl β-d-galactopyranoside is hydrolyzed about seven times more rapidly than GM1 in human brain (gray matter) and liver. Agarose gel filtration separated two forms of GM1 β-galactosidase in both brain and liver. The major form (ganglioside GM1 β-galactosidase A) had a molecular weight of 60–70 × 103 and the minor form (ganglioside GM1 β-galactosidase B) 600–800 × 103. The liver and brain GM1 β-galactosidases and 4-methylumbelliferyl β-galactosidase A cochromatographed on fractionation. The two forms of the enzyme in liver isolated by gel filtration corresponded to the two major forms found on starch gel electrophoresis and were converted to electrophoretically slower-moving forms after treatment with neuraminidase (EC 3.2.1.8, Cl. perfringens) suggesting that both are sialylated glycoproteins. The activity of GM1 β-galactosidase in the brain and liver tissue of patients with GM1 gangliosidosis Types I and II was less than 2% of control values. The mutation in each GM1 gangliosidosis appears to result in a severe reduction of activity of two ganglioside GM1 β-galactosidases.  相似文献   

8.
Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. In this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM1 and the α-galactosyl derivatives of the ganglioside GD1b. The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell–specific α-galactosyl derivatives of ganglioside GD1b and GM1 are important in maintaining normal cell morphology. (J Histochem Cytochem 58:83–93, 2010)  相似文献   

9.
Freeze-etch electron microscopy, a platinum shadowing technique, has been used to compare the lateral distribution of several gangliosides in bilayer model membranes by directly visualizing bound lectin molecules. In particular, GM1 and GD1a, major components of brain ganglioside, were studied in phase-separated mixtures of dipalmitoyl- and dielaidoylphosphatidylcholines exposed to Ricinus communis agglutinin and wheat germ agglutinin. The distribution of glycolipid showed evidence of microheterogeneity in that bound lectin tended to occur in clusters of several or more molecules. With GD1a as receptor such clusters were small and very uniformly distributed over the membrane surface. Somewhat larger, irregularly spaced clusters of up to a dozen lectin particles were more typical of membranes bearing GM1 and, in addition, there were occasional extensive patches of bound lectin coexisting with areas apparently devoid of glycolipid receptor in phase-separated mixtures of dipalmitoyl- and dielaidoylphosphatidylcholine. Gangliosides in the latter mixtures were not obviously influenced in their lateral distribution by the presence of coexisting fluid and rigid domains. These basic observations seem to extend to bilayer membranes containing mixtures of two gangliosides. The patterns of lectin binding were not grossly affected by incubation time or history of warming and cooling. This study was extended to bilayers of pure dipalmitoylphosphatidylcholine in expectation that the distinctive features characteristic of the Pβ′ phase of this lipid might accentuate any behavioural differences between GM1 and GD1a.GM1 was found to exist preferentially in the ‘trough’ regions between Pβ′ ripples, while GD1a showed no apparent preferential arrangement. Given that bound lectins adequately reflect glycolipid distribution in membranes, it would appear that structurally different glycolipids from the same host membrane can assume different distributions on the basis of interactions with defined lipid host matrices.  相似文献   

10.
—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.  相似文献   

11.
Coligenoid, composed of the B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli, was separated into monomers in the presence of 2% propionic acid containing 6 M urea (pH 3.8). Monomers equilibrated against 0.75% or 0.5% propionic acid containing 3 M urea (pH 3.8) did not reassemble into coligenoid. Complexes of GM1 ganglioside and coligenoid in these buffers were detected by SDS-polyacrylamide gel electrophoresis, but those of the GM1 ganglioside and monomers were not. The binding ability of monomer to GM1 ganglioside in these buffers was about 1% of that of normal coligenoid by GM1-enzyme-linked immunosorbent assay. Moreover, monomers in these buffers reassembled into coligenoid by buffering against original TEAN buffer, and the binding ability of the resulting coligenoid to GM1 ganglioside was identical to that of native coligenoid. These data suggest that although coligenoid formation is important for the receptor binding of the B subunit, little binding ability to GM1 ganglioside remains in monomer of the B subunit.  相似文献   

12.
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.  相似文献   

13.
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.  相似文献   

14.
Abstract— Isolated neuronal cell bodies and astroglia of young (15–20-day-old) rat brains were both found to contain small concentrations of a variety of glycosphingolipids, including glucosylceramide, galactosylceramide, sulphatide, dihexosylceramide and gangliosides. These sphingolipids, plus sphingomyelin, were isolated, quantitated and their fatty acid and long chain base patterns determined. These data were compared to similar data obtained on these lipids isolated from whole brain and myelin of rats of the same age range. Glucosylceramide was found in an amount equal to galactosylceramide in neurons, and accounted for 35 per cent of the total monohexosylceramide in astroglia. Dihexosylceramide was present in nearly the same amount as sulphatide in both cell types. The sphingolipids of each cell type had characteristic fatty acid patterns. Generally the whole brain fatty acid patterns resembled those of astroglial lipids rather than neuronal lipids. In no case did the cell sphingolipid fatty acids resemble those of myelin. However, the galactosylceramide and sulphatides of both cells had unsubstituted and α-hydroxy acids, both of which had appreciable quantities of C24 acids. The ganglioside fatty acids of each cell type were similar and not unusual, but were quite different from those of glucosylceramide and dihexosylceramide; the latter having appreciable quantities of 16:0 and acids longer than 18:0. The ganglioside patterns of these cells were similar and only slightly different from that of whole brain. Long chain bases of sphingolipids were mainly C18-sphingosine in both cell types, and those of ganglioside and sphingomyelin contained small amounts of C20-sphingosine.  相似文献   

15.
Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.  相似文献   

16.
Incubation of culture supernatants from concanavalin A-stimulated guinea pig and rat lymphocytes with protein-free preparations of bovine brain gangliosides abolished their macrophage migration inhibitory factor (MIF) and macrophage activation factor (MAF) activity. The identity of the MIF/MAF-binding component(s) present in these glycolipid mixtures has yet to be established, but adsorption experiments using purified preparations of mono- (GM1, GM2, and GM3), di- (GD1a), and trisialogangliosides (GT1) were negative. Since these gangliosides account for over 90% of the glycolipid content in brain ganglioside mixtures it appears that the MIF-binding component(s) is present only in very small amounts. Treatment of guinea pig peritoneal macrophages with liposomes containing similar brain gangliosides or water-soluble glycolipids extracted from guinea pig macrophages enhanced their responsiveness to MIF. The enhanced response to MIF of liposome-treated macrophages was abolished by incubation of the treated macrophages with fucose-binding lectins (Lotus agglutinin and Ulex europaeus agglutinin I) before exposure to MIF, suggesting that the MIF-binding component donated by the liposomes may be a fucose-containing glycolipid. The possible role of glycolipids as surface receptors for MIF and MAF is discussed.  相似文献   

17.
GM3 or GM1 ganglioside exogenously added in chemically-defined medium incorporate equally into cells. However, only GM3 showed a significant growth inhibition to hamster fibroblasts (BHK). The GM3-fed cells became refractory to growth stimulation by fibroblast growth factor (FGF) in chemically-defined media. Radiolabeled FGF accumulated on GM3-fed cells, but not on GM1-fed cells. Both GM3 and GM1 did not directly interact with FGF. These data suggest that GM3 may regulate the function of the receptors for growth hormones.  相似文献   

18.
The fatty acid composition of cerebrosides, sulphatides and ceramides was determined at 15-16 days post partum in the brain of the Jimpy mutant and in littermate controls. There was a marked deficit in the long chain fatty acids (C22-C24) of cerebrosides and sulphatides of Jimpy brain, with the unsubstituted fatty acids affected more than the alpha-hydroxy fatty acids. A decrease of long chain normal fatty acids was also found in the ceramides of Jimpy brain. The deficit of long chain fatty acids in these sphingolipids of the Jimpy brain was more severe than that found in the Quaking mutant which has a less extensive disorder of myelin formation.  相似文献   

19.
The lipid composition of the microbial community inhabiting activated sludge in a pilot reactor for the anaerobic oxidation of ammonium (anammox) at the Kur’yanovo Treatment Plant (Moscow) has been studied. The fatty acid composition is mostly based on common fatty acids C14–C18 (95%) with both normal and isomeric structures. The biomass of activated sludge was found to contain lipids with the so-called ladderane substances (ladder alcohols and fatty acids) that are common for anammox bacteria: C20-[3]-lad-derane and C20-[5]-ladderane alcohols and C18- and C20-[3]-ladderane and C18- and C20-[5]-ladderane acids. In addition, the native extract contained both simple and compound ethers of the above-mentioned substances with residues of phosphocholine, phosphoethanolamine, and phosphoglycerine. The spectra of the electron impact and tandem mass spectrometry of certain substances have been obtained and published for the first time.  相似文献   

20.
Abstract— The incorporation of NeuNAc from CMP-NeuNAc into endogenous glycolipids and glyco-proteins, and exogenously added GM1a (monosialoganglioside) and desialylated fetuin (DS-fetuin) was studied with particulate preparations from 11 to 15 day old rat cerebra. The apparent +K++m values of the enzyme systems for the different substrates, assayed with 0.5 mg enzyme protein, were: CMP-NeuNAc, 0.13 mm (same with endogenous and exogenous glycolipid and glycoprotein substrates); GM1a, 0.20 mm ; DS-fetuin, 0.15 mm (or 1.2 mm in terms of acceptor sites). The activities, expressed as nmoles NeuNAc incorporated per 0.5 mg enzyme protein per 30 min incubation at 37°C and pH 6.3, were 0.094, 0.039, 0.17 and 0.64 with the endogenous glycolipids, endogenous glycoproteins, exogenous GM1a and exogenous DS-fetuin, respectively. Incorporation into endogenous glycolipids was mainly in GM3, while exogenously added GM1a was converted to GD1a. Incorporation into endogenous glycoproteins yields about 20 sialoglycopolypeptides on SDS-polyacrylamide gel electrophoresis. Neura-minidase pretreatment of the particulate enzyme preparation decreased sialylation of the higher molecule weight polypeptides but increased sialylation of the lower molecule weight species. The sialyltransferase activity with the endogenous glycolipid substrates was more heat resistant than the activities with exogenous GM1a. Since more than 60% of the endogenous glycolipid activity was due to the conversion of lactosylceramide to GM3, the sialyltransferase responsible for this reaction appears to be different from the one that acts on GM1a. This was supported by the observation that exogenously added GM1a did not diminish the incorporation of NeuNAc into endogenous lactosylceramide. These two glycolipid sialyltransferase activities were distinguishable from the glycoprotein sialyltransferase activity since exogenous DS-fetuin did not compete with either the endogenous or the exogenous glycolipids for CMP-NeuNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号