首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The High-Mobility Group Box (HMGB) proteins are highly abundant proteins with both nuclear and extracellular roles in key biological processes. In mammals, three family members are present: HMGB1, HMGB2 and HMGB3. We characterized the HMGB family in zebrafish and report a detailed phylogenetic analysis of HMGB proteins. The B1, B2, and B3 subfamilies are present in cartilaginous fish, bony fish, and tetrapods, while jawless fish sequences emerge as basal to the gene family expansion. Two co-orthologs of each mammalian HMGB gene are present in zebrafish. All six zebrafish hmgb genes are maternally expressed, but huge differences in expression levels exist during embryonic development. The hmgb2a/hmgb2b genes are the most highly expressed, while hmgb3b is expressed at the lowest level. Remarkably, hmgb3 genes are not present in fugu, medaka, Tetraodon and stickleback. Our analysis highlights substantial overlaps, but also subtle differences and specificities in the expression patterns of the zebrafish hmgb genes.  相似文献   

3.
4.
A collagenous extracellular matrix was previously considered to be a requirement for classification of true cartilage. Data from the lamprey and hagfish now clearly indicate that both of these jawless craniates have extensive non-collagenous, yet cartilaginous endoskeletons. Non-collagenous cartilages are present in the cephalochordates (amphioxus) and in the invertebrates, although collagen-containing cartilages also are found in the invertebrates. This review summarizes current knowledge of the morphological, biochemical and molecular characteristics of the unusual non-collagenous cartilages in jawless craniates and the cartilaginous tissues in amphioxus and invertebrates. A least two types of non-collagenous cartilage matrix proteins are found in both the hagfishes and the lampreys, all of which are resistant to digestion by cyanogen bromide (CNBr). Although all four of these matrices show some similarities with each other, suggesting a family of non-collagenous, elastin-like proteins, it is clear that the major matrix proteins of each are different. New morphological and biochemical information on the cartilaginous tissues in squid, horseshoe crab and amphioxus reveals the presence of CNBr-insoluble, non-collagenous matrix proteins, potentially extending the jawless craniate family of cartilaginous proteins into the invertebrates. Details of the evolutionary relationships between these non-collagenous matrix proteins and the significance of the occurrence of these proteins as the major components of the cartilaginous tissues of jawless craniates, amphioxus, horseshoe crab and squid, all of which are capable of producing a variety of collagens in other tissues, remain to be investigated.  相似文献   

5.
Retinoid X receptors (RXRs) are highly conserved members of the nuclear receptor family and mediate various physiological processes in vertebrates. Most studies on RXRs have concentrated on their structure and function in mammals and their characterization and developmental expression in Danio rerio. However, there is little information concerning the distribution of RXRs in teleost tissues. In the present study, we cloned partial sequences of three RXR subtypes (RXRa, -b, -g) from Sebastiscus marmoratus by RACE PCR and analyzed the phylogeny of the teleost and the tetrapod RXR genes, and identified some inconsistencies with previous studies. The tissue-specific and embryonic expression profiles of each RXR gene were explored using real time quantitative PCR. This analysis demonstrated that these RXRs were expressed in all test tissues indicating their participation in many physiological processes. However, we found a great difference in the distribution of RXRg between teleosts and mammals. Furthermore, we followed expression of the three subtypes through various embryo developmental stages and found that the RXRa orthologues of teleosts might be involved in the development of the anterior hindbrain, tailbud and neural crest and in the formation of the pharynx and fin, that RXRb played ubiquitous roles in fish early development, and that RXRg probably played a role in brain and nervous system development and function.  相似文献   

6.
Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electroreceptors. This calls into question the homology of electroreceptors and ampullary organs in the two lineages of jawed vertebrates. Here, we test the hypothesis that lateral line placodes form electroreceptors in cartilaginous fishes by undertaking the first long-term in vivo fate-mapping study in any cartilaginous fish. Using DiI tracing for up to 70 days in the little skate, Leucoraja erinacea, we show that lateral line placodes form both ampullary electroreceptors and mechanosensory neuromasts. These data confirm the homology of electroreceptors and ampullary organs in cartilaginous and non-teleost bony fishes, and indicate that jawed vertebrates primitively possessed a lateral line placode-derived system of electrosensory ampullary organs and mechanosensory neuromasts.  相似文献   

7.
8.
9.
10.
Haruta C  Suzuki T  Kasahara M 《Immunogenetics》2006,58(2-3):216-225
The jawless vertebrates, represented by hagfish and lampreys, are the most advanced animals that apparently lack T cell and B cell receptors. As such, they offer unique opportunities for understanding the evolution of antigen receptors and variable (V)-type immunoglobulin (Ig)-like domains. In the present study, we describe four hagfish Ig superfamily (IgSF) members carrying V-type domains. None of them appeared to have direct counterparts in jawed vertebrates, indicating that many IgSF molecules have either evolved independently in jawed and jawless vertebrates or diverged to the extent that clear homology is no longer recognizable. One of the members encoded a molecule closely related to the previously described membrane protein designated novel ITAM (immunoreceptor tyrosine-based activation motif)-containing IgSF receptors (NICIR). We show here that NICIR is a polymorphic multigene family with at least three members and is expressed predominantly in peripheral blood leukocytes. Phylogenetic analysis indicates that among known proteins, NICIR is most closely related to the lamprey molecule recently proposed to be a potential ancestor of T cell receptors.Sequence data reported in this paper were submitted to the DDBJ/EMBL/GenBank databases under accession nos. AB234206-AB234210, AB242215-AB224219, and AB242221-AB242223.  相似文献   

11.
TheWntgene family consists of at least 15 structurally related genes that encode secreted extracellular signaling factors. Wnt proteins function in a range of critical developmental processes in both vertebrates and invertebrates and are implicated in regulation of cell growth and differentiation in certain adult mammalian tissues, including the mammary gland. We have isolated a number of WNT sequences from human genomic DNA, two of which, designated WNT14 and WNT15, represent novel members of theWntgene family. We also isolated WNT sequences from human mammary cDNA and present evidence that WNT13 is expressed in human breast tissue, in addition to those previously described. WNT14 and WNT15 appear to have originated from an ancestral branch of theWntgene family that also includes theWnt9sequences found in jawless and cartilaginous fishes. AWnt14cDNA was also isolated from chicken and a partialWnt15sequence from mouse. We show that human WNT14 maps to chromosome 1 and that WNT15 maps distal to BRCA1 on chromosome 17q21, where it lies within 125 kb of another WNT family member, WNT3.  相似文献   

12.
Tissues from a range of fish were examined for the presence of parathyroid hormone-related protein (PTHrP) to investigate PTHrP protein distribution and PTHrP gene expression in jawless fish, cartilaginous fish, and bony fish. Immunoreactive PTHrP was localized using antisera to N-terminal and mid-molecule regions of human PTHrP and PTHrP gene expression examined using a digoxigenin labeled riboprobe to a conserved region of the mammalian PTHrP gene. In all of the fish studied, PTHrP protein and messenger RNA (mRNA) were localized to the skin, kidney, and skeletal muscle, following the pattern seen in higher vertebrates. Additional sites of localization for both protein and mRNA included gill, nerve cord, and pituitary, as well as developing dermal denticles and rectal gland in the elasmobranch species. The sites of PTHrP distribution indicate that PTHrP may have roles in ionoregulation as well as growth and differentiation in fish, as has been suggested in higher vertebrates. The results imply that the distribution of PTHrP is widespread in fish and that there is homology between the PTHrP molecules found in humans and fish. The conservation of localization and possible similarity of the PTHrP molecules between tetrapods and fish suggests that PTHrP has a number of fundamental roles in vertebrates. J. Exp. Zool. 284:541-548, 1999.  相似文献   

13.
Vertebrate genomes contain thousands of conserved noncoding elements (CNEs) that often function as tissue-specific enhancers. In this study, we have identified CNEs in human, dog, chicken, Xenopus, and four teleost fishes (zebrafish, stickleback, medaka, and fugu) using elephant shark, a cartilaginous vertebrate, as the base genome and investigated the evolution of these ancient vertebrate CNEs (aCNEs) in bony vertebrate lineages. Our analysis shows that aCNEs have been evolving at different rates in different bony vertebrate lineages. Although 78-83% of CNEs have diverged beyond recognition ("lost") in different teleost fishes, only 24% and 40% have been lost in the chicken and mammalian lineages, respectively. Relative rate tests of substitution rates in CNEs revealed that the teleost fish CNEs have been evolving at a significantly higher rate than those in other bony vertebrates. In the ray-finned fish lineage, 68% of aCNEs were lost before the divergence of the four teleosts. This implicates the "fish-specific" whole-genome duplication in the accelerated evolution and the loss of a large number of both copies of duplicated CNEs in teleost fishes. The aCNEs are rich in tissue-specific enhancers and thus many of them are likely to be evolutionarily constrained cis-regulatory elements. The rapid evolution of aCNEs might have affected the expression patterns driven by them. Transgenic zebrafish assay of some human CNE enhancers that have been lost in teleosts has indicated instances of conservation or changes in trans-acting factors between mammals and fishes.  相似文献   

14.
15.
1. The neuropeptide Y (NPY) family of peptides includes also the gut endocrine peptide YY (PYY), tetrapod pancreatic polypeptide (PP), and fish pancreatic peptide-tyrosine (PY). All peptides are 36 amino acids long.2. Sequences from many types of vertebrates show that NPY has remained extremely well conserved throughout vertebrate evolution with 92% identity between mammals and cartilaginous fishes.3. PYY has 97–100% identity between cartilaginous fishes and bony fishes, but is less conserved in amphibians and mammals (83% identity between amphibians and sharks and 75% identity between mammals and sharks).4. NPY and PYY share 70–80% identity in most species.5. Both NPY and PYY were present in the early vertebrate ancestor because both peptides have been found in lampreys.6. The tissue distribution appears to have been largely conserved between phyla, except that PYY has more widespread neuronal expression in lower vertebrates.7. Pancreatic polypeptide has diverged considerably among tetrapods leaving only 50% identity between mammals, birdsJreptiles and frogs.8. Several lines of evidence suggest that the PP gene arose by duplication of the PYY gene, probably in the early evolution of the tetrapods.9. The pancreatic peptide PY found in anglerfish and daddy sculpin may have resulted from an independent duplication of the PYY gene.10. The relationships of the recently described mollusc and worm peptides NPF and PYF with the NPY family still appear unclear.  相似文献   

16.
Cloned human interferon complementary DNAs were used as hybridization probes to detect interferon alpha and beta gene families in restriction endonuclease digests of total genomic DNA isolated from a wide range of vertebrates and invertebrates. A complex interferon-alpha multigene family was detected in all mammals examined, whereas there was little or no cross-hybridization of human interferon-alpha complementary DNA to non-mammalian vertebrates or invertebrates. In contrast, human interferon-beta complementary DNA detected one or two interferon-beta genes in all mammals tested, with the exception of the cow and the blackbuck, both of which possessed a complex interferon-beta multigene family which has presumably arisen by a recent series of gene duplications. Interferon-beta sequences could also be detected in non-mammalian vertebrates ranging from birds to bony fish. Detailed restriction endonuclease mapping of DNA sequences neighbouring the interferon-beta gene in a variety of primates indicated a strong evolutionary conservation of flanking sequences, particularly on the 3' side of the gene.  相似文献   

17.
Lehmann F  Gäthje H  Kelm S  Dietz F 《Glycobiology》2004,14(11):959-968
Siglecs are the largest family of sialic acid-recognizing lectins identified so far with 11 members in the human genome. Most of these siglecs are exclusively expressed by cells of the immune system. Comparison of different mammalian species has revealed differential and complex evolutionary paths for this protein family, even within the primate lineage. To understand the evolution of siglecs, in particular the origin of this family, we investigated the occurrence of corresponding genes in bony fish. Interestingly, only unambiguous orthologs of mammalian siglec-4, a cell adhesion molecule expressed exclusively in the nervous system, could be identified in the genomes of fugu and zebrafish, whereas no obvious orthologs of the other mammalian siglecs were found. As in mammals, fish siglec-4 expression is restricted to nervous tissues as demonstrated by northern blot. Expressed as recombinant protein, fish siglec-4 binds to sialic acids with a specificity similar to the mammalian orthologs. Relatively low sequence similarities in the cytoplasmic tail as well as an additional splice variant found in fish siglec-4 suggest alternative signaling pathways compared to mammalian species. Our observations suggest that this siglec occurs at least in the nervous system of all vertebrates.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号