首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ivanov A  Zhao H  Modyanov NN 《Biochemistry》2000,39(32):9778-9785
Spatial relationships among the transmembrane (TM) segments of alpha- and beta-subunits of the Na,K-ATPase molecule have been investigated using oxidative induction of disulfide bonds. The catalytic alpha-subunit contains 10 TM alpha-helices (H1-H10) with 9 Cys residues located within or close to the membrane moiety. There is one Cys residue in the single TM segment of beta-subunit (Hbeta). Previously, the cross-linking products containing the beta-subunit and two fragments of alpha-subunit (the N-terminal containing H1-H2 helices and the C-terminal containing H7-H10 helices) have been identified in experiments with membrane-bound or detergent-solubilized preparations of the membrane moiety of trypsin-digested Na,K-ATPase [Sarvazyan, N. A., Modyanov, N. N., and Askari, A. (1995) J. Biol. Chem. 270, 26528-26532 and Sarvazyan, N. A., Ivanov, A., Modyanov, N. N., and Askari, A. (1997) J. Biol. Chem. 272, 7855-7858]. Here, we have shown that Cu(2+)-phenanthroline treatment of digitonin-solubilized preparation provides the most efficient formation of intersubunit cross-linked product that is predominantly a dimer of beta-subunit and a 22-kDa C-terminal alpha-fragment containing H7-H10 helices. This cross-linked product was isolated and subjected to CNBr cleavage. The resulting fragments were electrophoretically separated and sequenced. A 17-kDa peptide composed of Ile853-Met942 alpha-fragment and Ala5-Met56 beta-fragment was identified as a product of intersubunit disulfide cross-link between Cys44 of Hbeta and either Cys911 or Cys930, located in H8. This provides the first direct experimental evidence of the juxtaposition of Hbeta and H8 within the Na,K-ATPase molecule. The second detected cross-linked product was composed of alpha-fragments Lys947-Met963 and Tyr974-Tyr1016 linked by induced disulfide bridge between Cys964 (H9) and Cys983 (H10). The spatial proximity of these Cys residues defines the mutual orientation of H9 and H10 helices of alpha-subunit.  相似文献   

2.
Wang G 《FEBS letters》2002,529(2-3):157-161
The X-ray structure of the N-terminal truncated human apoA-I [Borhani et al., Proc. Natl. Acad. Sci. USA 94 (1997) 12291] and the NMR structure of intact human apoA-I [Okon et al., FEBS Lett. 517 (2002) 139] found similar repeating helices. The crystal structure is a twisted circular four-helix bundle, consisting of four molecules of apoA-I(44-243), where four copies of the lecithin:cholesterol acyltransferase (LCAT)-activating domains are located outside the ring structure, while the aromatic-rich strong lipid-binding domains are inside. This architecture suggests a lipid-binding mechanism that lipids directly enter the hole of the crystal structure. Indeed, four copies of Trp50 and Trp72 are exposed and oriented toward the center of the ring, initiating lipid binding. This is followed by the inside-out rotations of the terminal helices to make a belt with all the hydrophobic faces of the helices facing inward. Such lipid-binding induced rotations have an impact on the conformation of the lipid-free form. Indeed, the structure of residues 78-81 changes from helical (free) to disordered (bound) while the structure of residues 221-227 changes from extended to helical.  相似文献   

3.
The cross-linking of actin to myosin subfragment 1 (S-1) with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide was reexamined by using two cross-linking procedures [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306; Sutoh, K. (1983) Biochemistry 22, 1579-1585] and two independent methods for quantitating the reaction products. In the first approach, the cross-linked acto-S-1 complexes were cleaved with elastase at the 25K/50K and 50K/22K junctions in S-1. This enabled direct measurements of the cross-linked and un-cross-linked fractions of the 50K and 22K fragments of S-1. We found that in all cases actin was preferentially cross-linked to the 22K fragment and that the overall stoichiometry of the main cross-linked products was that of a 1:1 complex of actin and S-1. In the second approach, actin was cross-linked to tryptically cleaved S-1, and the course of these reactions was monitored by measuring the decay of the free 50K and 20K fragments and the formation of cross-linked products. After selecting the optimal cross-linking procedure and conditions, we determined that the rate of actin cross-linking to the 20K fragment of S-1 was 3-fold faster than the reaction with the 50K peptide. The overall rate of cross-linking actin to S-1 corresponded to the sum of the individual reactions of the 50K and 20K fragments, indicating their mutually exclusive cross-linking to actin. Thus, the reactions with tryptically cleaved S-1 were consistent with the 1:1 stoichiometry of actin and S-1 in the main cross-linked products and verified the preferential cross-linking of actin to the 20K fragment of S-1. These results are discussed in the context of the binding of actin to S-1.  相似文献   

4.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1987,26(22):7042-7047
We have used the sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) to study the interaction of rabbit skeletal muscle troponin C (TnC) and troponin I (TnI). TnC was specifically labeled at Cys-98 by the maleimide moiety of BPMal, and a binary complex was formed with TnI in the presence of Ca2+. Upon photolysis, covalent cross-links were formed between TnC and TnI [Tao, T., Scheiner, C.J., & Lamkin, M. (1986) Biochemistry 25, 7633-7639]. The cross-linked heterodimer was digested with cyanogen bromide, pepsin, and chymotrypsin into progressively smaller cross-linked peptides, which were purified by HPLC and then characterized by amino acid analysis and sequencing. We obtained a fraction from the initial CNBr digest that contained the expected peptide CB9 (residues 84-135) of TnC, cross-linked mainly to CN4 (residues 96-116), the "inhibitory region" of TnI. The peptides CN1 and CN3 of TnI were also detected in this fraction, but their molar ratios (compared to CB9) were only about 0.15 each, compared to 0.60 for CN4. Sequence analyses of fractions obtained after peptic and chymotryptic digests of the cross-linked CNBr fraction confirmed that CB9 and CN4 were the major cross-linked species. Quantitative analysis of sequencer results indicated that the residues in TnI that appeared to be most highly cross-linked to Cys-98 of TnC were Arg-108 and Pro-110, and to a lesser extent Arg-103 and Lys-107. These findings are consistent with previous studies on interactions between TnI and TnC and provide, for the first time, direct information on the identities of proximate amino acids in the two proteins.  相似文献   

5.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

6.
J Botts  A Muhlrad  R Takashi  M F Morales 《Biochemistry》1982,21(26):6903-6905
Myosin subfragment 1 (S-1) was fluorescently labeled at its rapidly reacting thiol ("SH1"). Short exposure to trypsin cuts the S-1 heavy chain into three still-associated fragments (20K, 50K, and 27K) [Balint, M., Wolf, L., Tarcsafalvi, A., Gergely, J., & Sreter, F.A. (1978) Arch. Biochem. Biophys. 190, 793-799] which bind F-actin to the same extent as does the uncut labeled S-1, as indicated by time-resolved fluorescence anisotropy decay (at 4 degrees C, pH 7, in 0.15 M KC1 and 5 mM MgC12, +/- 1 mM ADP). These results are thus in agreement with turbidity measurements on similar systems as reported by Mornet et al. [Mornet, D., Pantel, P., Audemard, E., & Kassab, R. (1979) Biochem. Biophys. Res. Commun. 89, 925-932]. The excited-state lifetime of the fluorescent label on cut S-1 is indistinguishable from that on normal S-1 (+/- ADP, +/- F-actin). F-Actin activation of MgATPase of cut S-1 is lower than that for normal S-1 at moderate concentrations of F-actin, as reported by Mornet et al. (1979). But as the F-actin concentration is increased, the MgATPase activities for cut S-1 approach those for uncut S-1. In terms of an eight-species steady-state kinetics scheme involving actin binding to free S-1, S-1 . ATP, S-1. ADP X P, and S-1 . ADP, actin affinity for the species S-1 . ADP X P was found to be 13.4 times greater for uncut S-1 than for cut S-1 [at 24 degrees C, pH 7.0, in 3 mM KC1, 1 mM ATP, 1 mM MgCl2, and 20 mM N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid].  相似文献   

7.
The T domain of diphtheria toxin undergoes a low pH-induced conformational change that allows it to penetrate cell membranes. T domain hydrophobic helices 8 and 9 can adopt two conformations, one close to the membrane surface (P state) and a second in which they apparently form a transmembrane hairpin (TM state). We have now studied T domain helices 5-7, a second cluster of hydrophobic helices, using Cys-scanning mutagenesis. After fluorescently labeling a series of Cys residues, penetration into a non-polar environment, accessibility to externally added antibodies, and relative depth in the bilayer were monitored. It was found that helices 5-7 insert shallowly in the P state and deeply in the TM state. Thus, the conformational changes in helices 5-7 are both similar and somehow linked to those in helices 8 and 9. The boundaries of deeply inserting sequences were also identified. One deeply inserted segment was found to span residues 270 to 290, which overlaps helix 5, and a second spanned residues 300 to 320, which includes most of helix 6 and all of helix 7. This indicates that helices 6 and 7 form a continuous hydrophobic segment despite their separation by a Pro-containing kink. Additionally, it is found that in the TM state some residues in the hydrophilic loop between helices 5 and 6 become more highly exposed than they are in the P state. Their exposure to external solution in the TM state indicates that helices 5-7 do not form a stable transmembrane hairpin. However, helix 5 and/or helices 6 plus 7 could form transmembrane structures that are in equilibrium with non-transmembrane states, or be kinetically prevented from forming a transmembrane structure. How helices 5-7 might influence the mechanism by which the T domain aids translocation of the diphtheria toxin A chain across membranes is discussed.  相似文献   

8.
The conformation of pituitary adenylate cyclase activating polypeptide with 27 residues (PACAP27) has been determined by two-dimensional NMR and CD spectroscopies and distance geometry in 25% methanol. Residues 9-20 and 22-25 have well-defined conformations but other residues do not show ordered conformations. The conformation of residues 9-20 is composed of three distinct regions of beta turn-like conformation (residues 9-12), alpha helix (residues 12-14) and the looser helical conformation (residues 15-20), while residues 22-24 form alpha helix. PACAP27 has a 2 helices separated by a disordered region similar to a VIP analog reported by Fry et al. but is distinct from the VIP analog in the position of the first helix, which is shifted by 2 residues toward the C-terminus, and in the form of the second helix [Fry, D.C., Madison, V.S., Bolin, D.R., Greeley, D.N., Toome, V. and Wegrzynski, B.B. (1989) Biochemistry 28, 2399-2409].  相似文献   

9.
Vik SB 《FEBS letters》2011,585(8):1180-1184
An assignment of the transmembrane helices of subunits L, M, and N of the Escherichia coli Complex I has been made from the helices as determined in a recent crystal structure [Efromov et al., Nature (2010) 465, 441-446]. The amino acid sequences of the three subunits were evaluated for hydrophobicity, and hydrophobic moments, to identify the helices that are likely to be in contact with membrane lipids. Using 29 closely related species, a similar analysis of average conservation, and conservation moments was performed. In each subunit, transmembrane helices 9 and 12 are predicted to form the discontinuous helices, which are likely to play a key role in function.  相似文献   

10.
Structural changes in subfragment 1 of skeletal muscle myosin were investigated by cross-linking trypsin-cleaved S1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. In the absence of nucleotide the alkali light chains are cross-linked to the 27 kDa heavy chain fragment; the presence of MgATP reduces the efficiency of this reaction. On the other hand, MgATP promotes the cross-link formation between the N-terminal 27 kDa and C-terminal 20 kDa fragments of the heavy chain. The chemical cleavage of the cross-linked heavy chains fragments with N-chlorosuccinimide and hydroxylamine indicates that the cross-links are formed between the regions spanning residues 131-204 and 699-809. These results indicate that the two regions of the heavy chain that are relatively distant in nucleotide-free skeletal S1 [Rayment et al. (1993) Science 261, 50-58] can potentially interact upon addition of nucleotide.  相似文献   

11.
R T King  L E Greene 《Biochemistry》1985,24(24):7009-7014
Chalovich and Eisenberg [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437] have suggested that at low ionic strength, troponin-tropomyosin regulates the actomyosin ATPase activity by inhibiting a kinetic step in the actomyosin ATPase cycle rather than by blocking the binding of myosin subfragment 1 (S-1) to actin. This leads to the prediction that troponin-tropomyosin should inhibit the ATPase activity of the complex of actin and S-1 (acto . S-1) even when S-1 is cross-linked to actin. We now find that the ATPase activity of cross-linked actin . S-1 prepared under milder conditions than those used by Mornet et al. [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306] is inhibited 90% by troponin-tropomyosin in the absence of Ca2+. At mu = 18 mM, 25 degrees C, the ATPase activity of this cross-linked preparation is only about 2-fold greater than the maximal actin-activated ATPase activity of S-1 obtained with regulated actin in the absence of Ca2+. At physiological ionic strength, the ATPase activity of this cross-linked actin . S-1 preparation is inhibited about 95% by troponin-tropomyosin. Since cross-linked S-1 behaves kinetically like S-1 in the presence of infinite actin concentration, it is very unlikely that inhibition of the ATPase activity of cross-linked actin . S-1 is due to blocking of the binding of S-1 to actin. Therefore, these results are in agreement with the suggestion that troponin-tropomyosin regulates primarily by inhibiting a kinetic step in the ATPase cycle.  相似文献   

12.
Specific carboxyl modification of purple membrane using a water-soluble carbodiimide yielded a mixture of oligomers, revealed by gel electrophoresis. Purple membrane pre-treated with papain or trypsin, cleaving the C-terminal tail, showed the same pattern of cross-linked products. Chymotryptic cleavage released amino acids 1-72 (7kD fragment) from the cross-linked products, as it did with native membrane. The tail and helices A and B are not, therefore, involved in carbodiimide-promoted cross-linking. Similar cleavage of a hydrophobic dihydroquinoline-modified sample showed that mainly intra-molecular cross-linking occurs, with little cross-linking between the large and small chymotryptic fragments.  相似文献   

13.
In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.  相似文献   

14.
The purified erythrocyte Ca2+ pump has been exposed to trypsin under conditions designed to enrich the fragments of molecular mass 90, 85, 81, and 76 kDa, respectively. In SDS-polyacrylamide gels, these fragments are accompanied by a product of molecular mass about 33 kDa. N- and C-terminal sequencing of the fragments blotted on PVDF membranes has located the four high molecular mass fragments and the 33-kDa fragment within the pump structure. The work has extended previous work on the organization of the calmodulin-interacting domain of the pump (Zurini et al., 1984; Benaim et al., 1984) and has tentatively placed the domain of the pump which interacts with acidic phospholipids between transmembrane helices 2 and 3.  相似文献   

15.
SecA interacts with presecretory proteins through recognition of the positive charge at the amino terminus of the signal peptide (Akita, M., Sasaki, S., Matsuyama, S., and Mizushima, S. (1989) J. Biol. Chem. 265, 8164-8169). A large variety of amino-terminal and carboxyl-terminal fragments of SecA were prepared in 6 M guanidine hydrochloride. SecA analogues were then reconstituted from them and examined for their ability to cross-link with [35S]proOmpF-Lpp, a presecretory protein, in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The reconstituted SecA analogues were active in the cross-linking with proOmpF-Lpp when the SecA fragments used were large enough to structurally complement each other. The cross-linking was signal peptide-dependent and suppressed in the presence of other presecretory proteins. The cross-linking was enhanced in the presence of ATP. The SecA fragments that cross-linked with proOmpF-Lpp were then analyzed on sodium dodecyl sulfate-polyacrylamide gels. The cross-linking preferentially took place on fragments possessing the amino terminus of SecA. Weak cross-linking was also observed with carboxyl-terminal fragments when they were large enough. The smallest amino-terminal and carboxyl-terminal fragments with which the cross-linking was observed were 39 and 72 kDa, respectively. From these results, the region responsible for the cross-linking with presecretory proteins was deduced to be located between amino acid residues 267 and 340 from the amino terminus of SecA. These results are discussed in relation to the structure and function of SecA.  相似文献   

16.
Homology modeling and scanning cysteine mutagenesis studies suggest that the human glucose transport protein GLUT1 and its distant bacterial homologs LacY and GlpT share similar structures. We tested this hypothesis by mapping the accessibility of purified, reconstituted human erythrocyte GLUT1 to aqueous probes. GLUT1 contains 35 potential tryptic cleavage sites. Fourteen of 16 lysine residues and 18 of 19 arginine residues were accessible to trypsin. GLUT1 lysine residues were modified by isothiocyanates and N-hydroxysuccinimide (NHS) esters in a substrate-dependent manner. Twelve lysine residues were accessible to sulfo-NHS-LC-biotin. GLUT1 trypsinization released full-length transmembrane helix 1, cytoplasmic loop 6-7, and the long cytoplasmic C terminus from membranes. Trypsin-digested GLUT1 retained cytochalasin B and d-glucose binding capacity and released full-length transmembrane helix 8 upon cytochalasin B (but not D-glucose) binding. Transmembrane helix 8 release did not abrogate cytochalasin B binding. GLUT1 was extensively proteolyzed by alpha-chymotrypsin, which cuts putative pore-forming amphipathic alpha-helices 1, 2, 4, 7, 8, 10, and 11 at multiple sites to release transmembrane peptide fragments into the aqueous solvent. Putative scaffolding membrane helices 3, 6, 9, and 12 are strongly hydrophobic, resistant to alpha-chymotrypsin, and retained by the membrane bilayer. These observations provide experimental support for the proposed GLUT1 architecture; indicate that the proposed topology of membrane helices 5, 6, and 12 requires adjustment; and suggest that the metastable conformations of transmembrane helices 1 and 8 within the GLUT1 scaffold destabilize a sugar translocation intermediate.  相似文献   

17.
Wang Q  Kaback HR 《Biochemistry》1999,38(10):3120-3126
Coexpression of lacY gene fragments encoding the first two transmembrane domains and the remaining 10 transmembrane domains complement in the membrane and catalyze active lactose transport [Wrubel, W., Stochaj, U., et al. (1990) J. Bacteriol. 172, 5374-5381]. Accordingly, a plasmid encoding contiguous, nonoverlapping permease fragments with a discontinuity in the cytoplasmic loop between helices II and III (loop II/III) was constructed (N2C10 permease). When Phe27 (helix I) is replaced with Cys, cross-linking is observed with two native Cys residues, Cys148 (helix V) and Cys355 (helix XI). Cross-linking of a Cys residue at position 27 to Cys148 occurs with N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), with N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A), or with 1,6-bis(maleimido)hexane (BMH; flexible 16 A). On the other hand, with the Phe27-->Cys/Cys355 pair, cross-linking is observed with p-PDM or BMH but not o-PDM. In neither case is cross-linking observed with iodine. It is suggested that a Cys residue at position 27 is within 6-10 A from Cys148 and about 10 A from Cys355. The results provide evidence for proximity between helix I and helices V or XI in the tertiary structure of the permease. In addition, the findings are consistent with other results [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] indicating that Glu126 (helix IV) and Arg144 (helix V) are within the membrane, rather than at the membrane-water interface on the cytoplasmic face.  相似文献   

18.
T Chen  D Applegate  E Reisler 《Biochemistry》1985,24(20):5620-5625
Chemical cross-linking of actin to the 20K and 50K fragments of tryptically cleaved myosin subfragment 1 (S-1) by the zero-length cross-linking reagent 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide (EDC) was used as a probe of the acto-S-1 interface in the presence of nucleotides. The course of the two reactions was monitored by measuring on sodium dodecyl sulfate (SDS)-polyacrylamide gels the time-dependent formation of the 20K-actin and 50K-actin cross-linked products. Both reactions were inhibited somewhat in the presence of MgADP, were slowed 3-4-fold in the presence of magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and proceeded at least 7-fold slower with N,N'-p-phenylenedimaleimide (pPDM) modified S-1, as compared to the respective rates in the absence of nucleotides. However, neither the binding of the nucleotides MgADP and MgAMPPNP to S-1 nor the modification of S-1 by pPDM significantly changed the ratio of the cross-linking rates of actin to the 20K and 50K fragments. Similar to what was previously observed in the absence of nucleotides [Chen, T., Applegate, D., & Reisler, E. (1985) Biochemistry 24, 137-144], actin was cross-linked at an approximately 3-fold faster rate to the 20K fragment than to the 50K fragment under all reaction conditions tested. Thus, irrespective of the extent of acto-S-1 dissociation or the binding of nucleotides to acto-S-1, the 20K fragment remains the preferred cross-linking site for actin. These results show that the interaction of actin with each of the cross-linking sites on S-1 is not under selective or preferential control by nucleotides.  相似文献   

19.
Rosconi MP  Zhao G  London E 《Biochemistry》2004,43(28):9127-9139
Low pH-induced membrane insertion by diphtheria toxin T domain is crucial for A chain translocation into the cytoplasm. To define the membrane topography of the T domain, the exposure of biotinylated Cys residues to the cis and trans bilayer surfaces was examined using model membrane vesicles containing a deeply inserted T domain. To do this, the reactivity of biotin with external and vesicle-entrapped BODIPY-labeled streptavidin was measured. The T domain was found to insert with roughly 70-80% of the molecules in the physiologically relevant orientation. In this orientation, residue 349, located in the loop between hydrophobic helices 8 and 9, was exposed to the trans side of the bilayer, while other solution-exposed residues along the hydrophobic helices 5-9 region of the T domain located near the cis surface. A protocol developed to detect the movement of residues back and forth across the membranes demonstrated that T domain sequences did not rapidly equilibrate between the cis and the trans sides of the bilayer. Binding streptavidin to biotinylated residues prior to membrane insertion only inhibited T domain pore formation for residues in the loop between helices 8 and 9. Pore formation experiments used an approach avoiding interference from transient membrane defects/leakage that may occur upon the initial insertion of protein. Combined, these results indicate that at low pH hydrophobic helices 8 and 9 form a transmembrane hairpin, while hydrophobic helices 5-7 form a nonclassical deeply inserted nontransmembraneous state. We propose that this represents a novel pre-translocation state that is distinct from a previously defined post-translocation state.  相似文献   

20.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1988,27(18):6983-6987
The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号