首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.  相似文献   

4.
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.  相似文献   

5.
6.
Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1.  相似文献   

7.
Mcm10 is essential for chromosome replication in eukaryotic cells and was previously thought to link the Mcm2-7 DNA helicase at replication forks to DNA polymerase alpha. Here, we show that yeast Mcm10 interacts preferentially with the fraction of the Mcm2-7 helicase that is loaded in an inactive form at origins of DNA replication, suggesting a role for Mcm10 during the initiation of chromosome replication, but Mcm10 is not a stable component of the replisome subsequently. Studies with budding yeast and human cells indicated that Mcm10 chaperones the catalytic subunit of polymerase alpha and preserves its stability. We used a novel degron allele to inactivate Mcm10 efficiently and this blocked the initiation of chromosome replication without causing degradation of DNA polymerase alpha. Strikingly, the other essential helicase subunits Cdc45 and GINS were still recruited to Mcm2-7 when cells entered S-phase without Mcm10, but origin unwinding was blocked. These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins.  相似文献   

8.
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.  相似文献   

9.
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.  相似文献   

10.
11.
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2–7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2–7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2–7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.  相似文献   

12.
13.
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs.Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2–7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control.  相似文献   

14.
A direct quantitative analysis of the initial steps in primosome assembly, involving PriA and PriB proteins and the minimal primosome assembly site (PAS) of phage ?X174, has been performed using fluorescence intensity, fluorescence anisotropy titration, and fluorescence resonance energy transfer techniques. We show that two PriA molecules bind to the PAS at both strong and weak binding sites on the DNA, respectively, without detectable cooperative interactions. Binding of the PriB dimer to the PriA-PAS complex dramatically increases PriA's affinity for the strong site, but only slightly affects its affinity for the weak site. Associations with the strong and weak sites are driven by apparent entropy changes, with binding to the strong site accompanied by a large unfavorable enthalpy change. The PriA-PriB complex, formed independently of the DNA, is able to directly recognize the PAS without the preceding the binding of PriA to the PAS. Thus, the high-affinity state of PriA for PAS is generated through PriA-PriB interactions. The effect of PriB is specific for PriA-PAS association, but not for PriA-double-stranded DNA or PriA-single-stranded DNA interactions. Only complexes containing two PriA molecules can generate a profound change in the PAS structure in the presence of ATP. The obtained results provide a quantitative framework for the elucidation of further steps in primosome assembly and for quantitative analyses of other molecular machines of cellular metabolism.  相似文献   

15.
The eukaryotic DNA replication protein Mcm10 associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Xenopus laevis (X) Mcm10 binds DNA via a highly conserved internal domain (ID) and a C-terminal domain (CTD) that is unique to higher eukaryotes. Although the structural basis of the interactions of the ID with DNA and polymerase α is known, little information is available for the CTD. We have identified the minimal DNA binding region of the XMcm10-CTD and determined its three-dimensional structure by solution NMR. The CTD contains a globular domain composed of two zinc binding motifs. NMR chemical shift perturbation and mutational analysis show that ssDNA binds only to the N-terminal (CCCH-type) zinc motif, whose structure is unique to Mcm10. The second (CCCC-type) zinc motif is not involved in DNA binding. However, it is structurally similar to the CCCC zinc ribbon in the N-terminal oligomerization domain of eukaryotic and archaeal MCM helicases. NMR analysis of a construct spanning both the ID and CTD reveals that the two DNA binding domains are structurally independent in solution, supporting a modular architecture for vertebrate Mcm10. Our results provide insight in the action of Mcm10 in the replisome and support a model in which it serves as a central scaffold through coupling of interactions with partner proteins and the DNA.  相似文献   

16.
The interaction of new 1, 10-phenanthrolineoctyldithiocarbamatopalladium (II) nitrate with DNA from calf thymus was investigated at 300 and 310 K in a Tris-HCl buffer of pH 7.0 medium containing 20 mM sodium chloride. This water soluble, square planar Pd(II) complex has been synthesized and spectroscopic (electronic, infrared, and nuclear magnetic resonance) and elemental analysis of the complex are discussed. This complex shows greater growth inhibitory activity against human tumor cell line K562 than cisplatin. Results of UV-visible studies show that the complex exhibits cooperative binding with DNA and denatures the DNA at an extremely low concentration (~11.98 μM). Fluorescence studies reveal that the mode of binding of this complex with DNA seems to be intercalation. The results of sephadex G-25 column show that the binding of metal complex with DNA is so strong that it does not readily break. Several binding and thermodynamic parameters are also described. They may shed light on the mechanisms of interaction of this agent with DNA, which should be quite different from that of cisplatin.  相似文献   

17.
The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2–7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage.DNA replication during the S phase necessitates that the entire genome be duplicated with the minimum of errors. Thousands of replication forks are involved in this process and they must be coordinated to ensure that every section of DNA is only replicated once. Errors in DNA replication are likely to be a major cause of the genetic instability that can lead to cancer (1). Cells are able to prevent duplicate replication of DNA by having a distinct stage that occurs during the G1 phase when replication origins are “licensed” for replication, a process that involves the preloading of several proteins involved in DNA replication (2). As DNA is replicated at each origin, these proteins are removed, thereby ensuring that each origin fires only once during each S phase. DNA damage response kinases activated by the stalled forks prevent the replication machinery from being activated in new chromosome domains, indicating a tight relationship between the DNA damage response and the DNA replication pathways (3, 4).The first step of the replication licensing mechanism is the loading of the minichromosome maintenance (MCM)1 proteins on to replication origins along with origin recognition complex proteins, Cdt6 and Cdt1 (5). The eukaryotic MCM complex consists of six paralogs that form a heterohexameric ring. All eukaryotic organisms possess six homologous proteins (MCM2-MCM7) that form a heterohexameric ring that belong to the family of AAA+ (ATPase associated with various cellular activities) proteins and share similarities to other hexameric helicases (6). Even though additional MCM proteins have been identified in higher eukaryotes, the MCM2-MCM7 complex remains the prime candidate for the role of replicative helicase (7). MCM2–7 is required for both initiation and elongation of DNA replication, with its regulation at each stage being an essential player of eukaryotic DNA replication (8). As a critical mechanism to ensure only a single round of DNA replication, the loading of additional MCM2–7 complexes onto origins of replication is inactivated by redundant mechanisms after passage into S phase (9).The MCM complex plays a crucial role in determining the replication potential of cells, but recent work suggests that MCM proteins are not only targets of the S-phase checkpoints, but they also interact directly with components of the checkpoint and repair pathways (10, 11). In yeast, temperature sensitive MCM cells at restrictive temperature contain numerous foci recognized by the phosphorylated histone H2AX antibody (12), suggesting a role in the repair of DNA double-strand breaks. Although, in principle, only two DNA helicase activities are required to establish a bidirectional replication fork from each origin, a relatively large excess of MCM complexes are loaded at origins of replication and distributed along the chromatin (13). Their function is not well understood, and most of them are displaced from the DNA during S-phase, apparently without having played an active role in DNA replication. The “MCM paradox” refers to the fact that, at least in yeast, Xenopus, Drosophila, and mammalian cells, it is possible to reduce the concentration of MCM proteins by more than 90% without impairing DNA replication (1418) and also refers to the observation that the majority of MCM complexes do not localize to the sites of DNA synthesis in mammalian cells, further suggesting a potential role for the MCM proteins beyond DNA replication.Using a combination of stable isotope labeling with amino acids in cell culture (SILAC)–based quantitative proteomics (19) with immunoprecipitation of green fluorescent protein (GFP)-tagged fusion proteins (20), we identified differences in protein binding partners with the MCM complex following DNA damage. Stable cell lines expressing GFP-tagged MCM2 and MCM5 were used in immunoprecipitation experiments from cells that were either mock treated, or treated with Etoposide for 15, 60, and 240 min. Etoposide is an antitumor drug that stabilizes a covalent complex between the DNA topoisomerase II and DNA by interfering with the cleavage-ligation reaction of the topoisomerase (21). This revealed specific interaction between the MCM complex and several proteins such as Nucleophosmin, BAG2, UPP1, and HDAC10. Interestingly, the MCM complex showed dynamic changes in interaction with Importin7 and the histone chaperone ASF1, and a decrease in interaction with the Chromodomain helicase DNA binding protein 3 (CHD3) resulting from the treatment with etoposide. This increase in interaction with ASF1 was followed by an enrichment of histone proteins, suggesting a novel role for the MCM proteins in histone deposition on chromatin following DNA damage.  相似文献   

18.
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases.  相似文献   

19.
Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.  相似文献   

20.
头状链轮丝菌(Streptoverticillum caespitosus) ATCC27422是抗肿瘤药物——丝裂霉素A的产生菌,根据高GC含量革兰氏阳性菌染色体复制起始区两端基因序列的保守性,采用PCR方法从该菌中克隆了一段包含染色体复制起始区(oriC)的1.3 kb片段。序列分析发现,克隆片段与天蓝色链霉菌的oriC及邻近区域的同源性达80%以上;头状链轮丝菌oriC中含有22个DnaA-box,保守序列为TTGTCCACA。以克隆片段构建的质粒可以跨属转化变铅青链霉菌(S. lividans)ZX7,原生质体转化效率为3.2×102个/μgDNA;质粒在S. lividans ZX7中能以低拷贝形式稳定存在;转化子的菌落和菌丝形态均正常。头状链轮丝菌oriC序列与几种链霉菌的oriC有较高的同源性,以及在变铅青链霉菌中仍具有复制起始活性等说明链轮丝菌属与链霉菌属在系统发生上关系较近;但采用最大似然法分析oriC序列构建的头状链轮丝菌与几种链霉菌的系统进化树表明,头状链轮丝菌与几种链霉菌之间的分化距离远大于链霉菌之间的分化距离。该证据支持链轮丝菌属的独立分属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号