共查询到20条相似文献,搜索用时 0 毫秒
1.
Karl E. Duderstadt James M. Berger 《Critical reviews in biochemistry and molecular biology》2013,48(3):163-187
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed. 相似文献
2.
Venny Santosa Sabrina Martha Noriaki Hirose Katsunori Tanaka 《The Journal of biological chemistry》2013,288(10):6864-6880
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. 相似文献
3.
Xiangzi Han Franklin Mayca Pozo Jacob N. Wisotsky Benlian Wang James W. Jacobberger Youwei Zhang 《The Journal of biological chemistry》2015,290(19):12370-12378
Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1. 相似文献
4.
Mcm10 is essential for chromosome replication in eukaryotic cells and was previously thought to link the Mcm2-7 DNA helicase at replication forks to DNA polymerase alpha. Here, we show that yeast Mcm10 interacts preferentially with the fraction of the Mcm2-7 helicase that is loaded in an inactive form at origins of DNA replication, suggesting a role for Mcm10 during the initiation of chromosome replication, but Mcm10 is not a stable component of the replisome subsequently. Studies with budding yeast and human cells indicated that Mcm10 chaperones the catalytic subunit of polymerase alpha and preserves its stability. We used a novel degron allele to inactivate Mcm10 efficiently and this blocked the initiation of chromosome replication without causing degradation of DNA polymerase alpha. Strikingly, the other essential helicase subunits Cdc45 and GINS were still recruited to Mcm2-7 when cells entered S-phase without Mcm10, but origin unwinding was blocked. These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins. 相似文献
5.
Xiangzi Han Aaron Aslanian Kang Fu Toshiya Tsuji Youwei Zhang 《The Journal of biological chemistry》2014,289(35):24716-24723
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. 相似文献
6.
7.
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2–7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2–7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2–7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells. 相似文献
8.
9.
Michael Schumann Miroslav Malešević Erik Hinze Sebastian Mathea Marat Meleshin Mike Schutkowski Wolfgang Haehnel Cordelia Schiene-Fischer 《Journal of molecular biology》2018,430(24):5169-5181
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs.Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2–7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control. 相似文献
10.
A direct quantitative analysis of the initial steps in primosome assembly, involving PriA and PriB proteins and the minimal primosome assembly site (PAS) of phage ?X174, has been performed using fluorescence intensity, fluorescence anisotropy titration, and fluorescence resonance energy transfer techniques. We show that two PriA molecules bind to the PAS at both strong and weak binding sites on the DNA, respectively, without detectable cooperative interactions. Binding of the PriB dimer to the PriA-PAS complex dramatically increases PriA's affinity for the strong site, but only slightly affects its affinity for the weak site. Associations with the strong and weak sites are driven by apparent entropy changes, with binding to the strong site accompanied by a large unfavorable enthalpy change. The PriA-PriB complex, formed independently of the DNA, is able to directly recognize the PAS without the preceding the binding of PriA to the PAS. Thus, the high-affinity state of PriA for PAS is generated through PriA-PriB interactions. The effect of PriB is specific for PriA-PAS association, but not for PriA-double-stranded DNA or PriA-single-stranded DNA interactions. Only complexes containing two PriA molecules can generate a profound change in the PAS structure in the presence of ATP. The obtained results provide a quantitative framework for the elucidation of further steps in primosome assembly and for quantitative analyses of other molecular machines of cellular metabolism. 相似文献
11.
Patrick D. Robertson Benjamin Chagot Walter J. Chazin Brandt F. Eichman 《The Journal of biological chemistry》2010,285(30):22942-22949
The eukaryotic DNA replication protein Mcm10 associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Xenopus laevis (X) Mcm10 binds DNA via a highly conserved internal domain (ID) and a C-terminal domain (CTD) that is unique to higher eukaryotes. Although the structural basis of the interactions of the ID with DNA and polymerase α is known, little information is available for the CTD. We have identified the minimal DNA binding region of the XMcm10-CTD and determined its three-dimensional structure by solution NMR. The CTD contains a globular domain composed of two zinc binding motifs. NMR chemical shift perturbation and mutational analysis show that ssDNA binds only to the N-terminal (CCCH-type) zinc motif, whose structure is unique to Mcm10. The second (CCCC-type) zinc motif is not involved in DNA binding. However, it is structurally similar to the CCCC zinc ribbon in the N-terminal oligomerization domain of eukaryotic and archaeal MCM helicases. NMR analysis of a construct spanning both the ID and CTD reveals that the two DNA binding domains are structurally independent in solution, supporting a modular architecture for vertebrate Mcm10. Our results provide insight in the action of Mcm10 in the replisome and support a model in which it serves as a central scaffold through coupling of interactions with partner proteins and the DNA. 相似文献
12.
H. Mansouri-Torshizi M. Saeidifar A. Divsalar A. A. Saboury 《Nucleosides, nucleotides & nucleic acids》2013,32(6):405-422
The interaction of new 1, 10-phenanthrolineoctyldithiocarbamatopalladium (II) nitrate with DNA from calf thymus was investigated at 300 and 310 K in a Tris-HCl buffer of pH 7.0 medium containing 20 mM sodium chloride. This water soluble, square planar Pd(II) complex has been synthesized and spectroscopic (electronic, infrared, and nuclear magnetic resonance) and elemental analysis of the complex are discussed. This complex shows greater growth inhibitory activity against human tumor cell line K562 than cisplatin. Results of UV-visible studies show that the complex exhibits cooperative binding with DNA and denatures the DNA at an extremely low concentration (~11.98 μM). Fluorescence studies reveal that the mode of binding of this complex with DNA seems to be intercalation. The results of sephadex G-25 column show that the binding of metal complex with DNA is so strong that it does not readily break. Several binding and thermodynamic parameters are also described. They may shed light on the mechanisms of interaction of this agent with DNA, which should be quite different from that of cisplatin. 相似文献
13.
Yasunori Noguchi Yukari Sakiyama Hironori Kawakami Tsutomu Katayama 《The Journal of biological chemistry》2015,290(33):20295-20312
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases. 相似文献
14.
Krastanova I Sannino V Amenitsch H Gileadi O Pisani FM Onesti S 《The Journal of biological chemistry》2012,287(6):4121-4128
Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members. 相似文献
15.
The highly purified DNA Pol- from rat prostate tumor (PA-3) and human neuroblastoma (IMR-32) cells appeared to be inhibited by Ricin (RCA-II), and Con-A. Loss of activity (40 to 60%) of a specific form of DNA polymerase from IMR-32 was observed when the cells were treated with tunicamycin [Bhattacharya, P. and Basu, S. (1982) Proc. Natl. Acad. Sci., USA
79:1488–1492]. Binding of ConA and RCA to human recombinant DNA polymerase- showed a specific labile site in the N-terminus [Hsi et al.. (1990) Nucleic Acid Res.
18:6231–6237].The catalytic polypeptide, DNA polymerase- of eukaryotic origin, was isolated from developing tissues or cultured cells as a family of 180 to 120 kDa polypeptides, perhaps derived from a single primary structure. Immunoblot analysis with a monoclonal antibody (SJK-237-71) indicated that the lower molecular weight polypeptides resulted from either proteolytic cleavage of post-translational modification after specific cleavages. Present results suggest DNA polymerase- from embryonic chicken brain (ECB) contains an -galactose-binding subunit which may be involved in developmental regulation of the enzyme. It was shown before that the catalytic subunit of DNA polymerase- reduces from 186 kDa in 11-day-old ECB to 120 kDa in 19-day-old ECB [Ray, S. et al. Cell Growth and Differentiation
2:567–573] by the treatment with methyl--galactose. The low molecular weight DNA polymerase activity (120 kDa) can be reconstituted to high molecular weight (M
r = 186 kDa) with an -galactose binding, 56 kDa lectin-like protein. Polyclonal antibodies raised against the purified lectin were able to precipitate DNA.Pol- as determined by immunostaining with the polymerase--specific monoclonal antibody SJK 132-20, suggesting this is a DNA polymerase associated-lectin (DPAL). RCA-II and GS-I-Sepharose 4B chromatographies resulted in significant purification of DNA- and a complete separation of polymerase complex and primase. 相似文献
16.
Jun-Sub Im Soon-Young Park Won-Ho Cho Sung-Ho Bae Jerard Hurwitz Joon-Kyu Lee 《Cell cycle (Georgetown, Tex.)》2015,14(7):1001-1009
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells. 相似文献
17.
18.
头状链轮丝菌(Streptoverticillum caespitosus)ATCC27422染色体复制起始区(oriC)内共有22个DnaA盒结构;其中第21、22个DnaA盒彼此方向相反、相互重叠8个碱基。放线菌oriC数据库搜索发现,这种重叠DnaA盒在抗生素链霉菌、结核分枝杆菌等几种放线菌中也同样存在。在分枝杆菌中一般由第1、2个DnaA盒组成,而在链霉菌中由最后的两个DnaA盒(第21、22)组成。重叠DnaA盒保守序列为CTGTGCACAA,长度为10个碱基,即由于重叠的缘故比正常DnaA盒长1个碱基。通过测量载体对变铅青链霉菌的转化效率研究了oriC不同部位在染色体复制起始中的功能和地位。头状链轮丝菌oriC序列的5′端1~188位的片段虽然不包含有DnaA盒结构,但该片段的缺失,造成oriC复制起始功能的完全丧失。3′端793~939位片段同样没有DnaA盒结构,该片段的缺失,仅发生转化效率的降低约40%,说明oriC的793~939位序列对DNA复制起始效率以及复制子稳定性起重要作用。当oniC被克隆人载体时两端各带有一段dnaA、dnaN基因的部分序列,所构建的载体虽然转化效率较低,但转化子的菌落、菌丝形态与宿主菌原有的表型相接近,由此推断oriC两端的序列除了编码各自产物外,可能通过影响染色体DNA复制的起始效率、复制子稳定性等对染色体的复制起始发挥顺式调控作用。 相似文献
19.
Pavana M. Hegde Arijit Dutta Shiladitya Sengupta Joy Mitra Sanjay Adhikari Alan E. Tomkinson Guo-Min Li Istvan Boldogh Tapas K. Hazra Sankar Mitra Muralidhar L. Hegde 《The Journal of biological chemistry》2015,290(34):20919-20933
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells. 相似文献
20.
N.P. Bazhulina Y.G. Gursky V.L. Andronova E.D. Moiseeva А.M. Nikitin 《Journal of biomolecular structure & dynamics》2013,31(9):1456-1473
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80?bp). The protein also binds to a single-stranded DNA (OriS?) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3′-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5′- and 3′- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А?+?Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied. 相似文献