共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes.Results
We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies.Conclusions
This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all “life cycle” stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-727) contains supplementary material, which is available to authorized users. 相似文献2.
Josie A. Reinhardt Bryan Kolaczkowski Corbin D. Jones David J. Begun Andrew D. Kern 《Genetics》2014,197(1):361-373
Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species. 相似文献
3.
Kentaro M. Tanaka Corinna Hopfen Matthew R. Herbert Christian Schl?tterer David L. Stern John P. Masly Alistair P. McGregor Maria D. S. Nunes 《Genetics》2015,200(1):357-369
Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes, and anal plates exhibit striking differences between Drosophila mauritiana and D. simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits. 相似文献
4.
Karen G. Hales Christopher A. Korey Amanda M. Larracuente David M. Roberts 《Genetics》2015,201(3):815-842
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. 相似文献
5.
Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster 下载免费PDF全文
Heather E. Machado Alan O. Bergland Katherine R. O’Brien Emily L. Behrman Paul S. Schmidt Dmitri A. Petrov 《Molecular ecology》2016,25(3):723-740
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. 相似文献
6.
Christopher J. Reaume Marla B. Sokolowski Frederic Mery 《Proceedings. Biological sciences / The Royal Society》2011,278(1702):91-98
As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks. 相似文献
7.
Genetic variation at three dipeptidase loci (Dip-A, Dip-B, and Dip-C) in Drosophila simulans was analyzed by starch gel electrophoresis. Dip-A was found to be polymorphic in four populations, while Dip-B and Dip-C were found to be polymorphic in one. The numbers of different alleles found at each respective locus were: Dip-A, two; Dip-B, two; and Dip-C, three. Dip-A was genetically mapped at 57.9 on the second chromosome, and Dip-B and Dip-C at 80.9 and 87.9 on the third chromosome, respectively. Neither Dip-B nor Dip-C has been mapped in D. melanogaster because both loci are apparently monomorphic. Their map positions in D. simulans with respect to flanking markers whose homologous genes have been cytogenetically localized in D. melanogaster suggested that they might be mapped cytogenetically by using available deficiencies in D. melanogaster. Accordingly, by the construction of interspecific hybrids which carried deficiencies of melanogaster and an allele of simulans with a mobility different from that of the fixed melanogaster allele, Dip-B and Dip-C were localized between 87F12-14 and 88C1-3 and between 87B5-6 and 87B8-10, respectively, in the salivary gland chromosomes of D. melanogaster. The similarity between these two species is discussed on the basis of these findings. 相似文献
8.
The fate of stem cells is intricately regulated by numerous extrinsic and intrinsic factors that promote maintenance or differentiation. The RNA-binding translational repressor Pumilio (Pum) in conjunction with Nanos (Nos) is required for self-renewal, whereas Bam (bag-of-marbles) and Bgcn (benign gonial cell neoplasm) promote differentiation of germ line stem cells in the Drosophila ovary. Genetic analysis suggests that Bam and Bgcn antagonize Pum/Nos function to promote differentiation; however, the molecular basis of this epistatic relationship is currently unknown. Here, we show that Bam and Bgcn inhibit Pum function through direct binding. We identified a ternary complex involving Bam, Bgcn, and Pum in which Bam, but not Bgcn, directly interacts with Pum, and this interaction is greatly increased by the presence of Bgcn. In a heterologous reporter assay to monitor Pum activity, Bam, but not Bgcn, inhibits Pum activity. Notably, the N-terminal region of Pum, which lacks the C-terminal RNA-binding Puf domain, mediates both the ternary protein interaction and the Bam inhibition of Pum function. These studies suggest that, in cystoblasts, Bam and Bgcn may directly inhibit Pum/Nos activity to promote differentiation of germ line stem cells. 相似文献
9.
10.
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions. 相似文献
11.
R Erion JR Diangelo A Crocker A Sehgal 《The Journal of biological chemistry》2012,287(39):32406-32414
Sleep length and metabolic dysfunction are correlated, but the causal relationship between these processes is unclear. Octopamine promotes wakefulness in the fly by acting through the insulin-producing cells (IPCs) in the fly brain. To determine if insulin signaling mediates the effects of octopamine on sleep:wake behavior, we assayed flies in which insulin signaling activity was genetically altered. We found that increasing insulin signaling does not promote wake, nor does insulin appear to mediate the wake-promoting effects of octopamine. Octopamine also affects metabolism in invertebrate species, including, as we show here, Drosophila melanogaster. Triglycerides are decreased in mutants with compromised octopamine signaling and elevated in flies with increased activity of octopaminergic neurons. Interestingly, this effect is mediated at least partially by insulin, suggesting that effects of octopamine on metabolism are independent of its effects on sleep. We further investigated the relative contribution of metabolic and sleep phenotypes to the starvation response of flies with altered octopamine signaling. Hyperactivity (indicative of foraging) induced by starvation was elevated in octopamine receptor mutants, despite their high propensity for sleep, indicating that their metabolic state dictates their behavioral response under these conditions. Moreover, flies with increased octopamine signaling do not suppress sleep in response to starvation, even though they are normally hyper-aroused, most likely because of their high triglyceride levels. Together, these data suggest that observed correlations between sleep and metabolic phenotypes can result from shared molecular pathways rather than causality, and environmental conditions can lead to the dominance of one phenotype over the other. 相似文献
12.
Applications of Population Genetics to Animal Breeding,from Wright,Fisher and Lush to Genomic Prediction 总被引:1,自引:0,他引:1
William G. Hill 《Genetics》2014,196(1):1-16
Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives’ performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher’s infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with “genomic selection” is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.THE success of breeders in effecting immense changes in domesticated animals and plants greatly influenced Darwin’s insight into the power of selection and implications to evolution by natural selection. Following the Mendelian rediscovery, attempts were soon made to accommodate within the particulate Mendelian framework the continuous nature of many traits and the observation by Galton (1889) of a linear regression of an individual’s height on that of a relative, with the slope dependent on degree of relationship. A polygenic Mendelian model was first proposed by Yule (1902) (see Provine 1971; Hill 1984). After input from Pearson, Yule again, and Weinberg (who developed the theory a long way but whose work was ignored), its first full exposition in modern terms was by Ronald A. Fisher (1918) (biography by Box 1978). His analysis of variance partitioned the genotypic variance into additive, dominance and epistatic components. Sewall Wright (biography by Provine 1986) had by then developed the path coefficient method and subsequently (Wright 1921) showed how to compute inbreeding and relationship coefficients and their consequent effects on genetic variation of additive traits. His approach to relationship in terms of the correlation of uniting gametes may be less intuitive at the individual locus level than Malécot’s (1948) subsequent treatment in terms of identity by descent, but it transfers directly to the correlation of relatives for quantitative traits with additive effects.From these basic findings, the science of animal breeding was largely developed and expounded by Jay L. Lush (1896–1982) (see also commentaries by Chapman 1987 and Ollivier 2008). He was from a farming family and became interested in genetics as an undergraduate at Kansas State. Although his master’s degree was in genetics, his subsequent Ph.D. at the University of Wisconsin was in animal reproductive physiology. Following 8 years working in animal breeding at the University of Texas he went to Iowa State College (now University) in Ames in 1930. Wright was Lush’s hero: ‘I wish to acknowledge especially my indebtedness to Sewall Wright for many published and unpublished ideas upon which I have drawn, and for his friendly counsel” (Lush 1945, in the preface to his book Animal Breeding Plans). Lush commuted in 1931 to the University of Chicago to audit Sewall Wright’s course in statistical genetics and consult him. Speaking at the Poultry Breeders Roundtable in 1969: he said, “Those were by far the most fruitful 10 weeks I ever had.” (Chapman 1987, quoting A. E. Freeman). Lush was also exposed to and assimilated the work and ideas of R. A. Fisher, who lectured at Iowa State through the summers of 1931 and 1936 at the behest of G. W. Snedecor.Here I review Lush’s contributions and then discuss how animal breeding theory and methods have subsequently evolved. They have been based mainly on statistical methodology, supported to some extent by experiment and population genetic theory. Recently, the development of genomic methods and their integration into classical breeding theory has opened up ways to greatly enhance rates of genetic improvement. Lush focused on livestock improvement and spin-off into other areas was coincidental; but he had contact with corn breeders in Ames and beyond and made contributions to evolutionary biology and human genetics mainly through his developments in theory (e.g., Falconer 1965; Robertson 1966; Lande 1976, 1979; see also Hill and Kirkpatrick 2010). I make no attempt to be comprehensive, not least in choice of citations. 相似文献
13.
Chen P Tu X Akdemir F Chew SK Rothenfluh A Abrams JM 《Cell death and differentiation》2012,19(10):1655-1663
Heavy alcohol consumption provokes an array of degenerative pathologies but the signals that couple alcohol exposure to regulated forms of cell death are poorly understood. Using Drosophila as a model, we genetically establish that the severity of ethanol challenge dictates the type of death that occurs. In contrast to responses seen under acute exposure, cytotoxic responses to milder challenges required gene encoding components of the apoptosome, Dronc and Dark. We conducted a genome-wide RNAi screen to capture targets that specifically mediate ethanol-induced cell death. One effector, Drat, encodes a novel protein that contains an ADH domain but lacks essential residues in the catalytic site. In cultured cells and neurons in vivo, depletion of Drat conferred protection from alcohol-induced apoptosis. Adults mutated for Drat showed both improved survival and enhanced propensities toward sedation after alcohol challenge. Together, these findings highlight novel effectors that support regulated cell death incited by alcohol stress in vitro and in vivo. 相似文献
14.
Z Veneti S Zabalou G Papafotiou C Paraskevopoulos S Pattas I Livadaras G Markakis J K Herren J Jaenike K Bourtzis 《Heredity》2012,109(5):306-312
Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species. 相似文献
15.
McGaugh SE Noor MA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1587):422-429
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role. 相似文献
16.
The outcome of interspecific competition of two closely related species may depend upon genetic variation in the two species and the environment in which the experiment is carried out. Interspecific competition in the two sibling species, Drosophila melanogaster and D. simulans, is usually investigated using longterm laboratory stocks that often have mutant markers that distinguish them. To examine competition in flies that genetically more closely resemble flies in nature, we utilized freshly caught wildtype isofemale lines of the two species collected at the same site in San Carlos, Mexico. Under ordinary laboratory conditions, D. melanogaster always won in competition. However, in hotter and drier conditions, D. simulans competed much more effectively. In these environmental conditions, there were genetic differences in competitive ability among lines with the outcome of competition primarily dependent upon the line of D. melanogaster used but in some cases also influenced by the line of D. simulans used. Differences in the measures of productivity and developmental time did not explain the differences in competitive ability among lines. This suggests that the outcome of competition was not due to differences in major fitness components among the isofemale lines but to some other attribute(s) that influenced competitive ability. When lines of flies were combined, the outcome of competition was generally consistent with competitive outcomes between pairs of lines. In several cases, the combination of lines performed better than the best of the constituent lines, suggesting that competitive ability was combined heterotically and that the total amount of genetic variation was important in the outcome of interspecific competition. 相似文献
17.
Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila 下载免费PDF全文
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch. 相似文献
18.
Van Swinderen B Andretic R 《Proceedings. Biological sciences / The Royal Society》2011,278(1707):906-913
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories—each arguing for modulation of some aspect of the fly''s waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention. 相似文献
19.
The study of social behaviour within groups has relied on fixed definitions of an ‘interaction’. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space. 相似文献
20.
Pimenta de Castro I Costa AC Lam D Tufi R Fedele V Moisoi N Dinsdale D Deas E Loh SH Martins LM 《Cell death and differentiation》2012,19(8):1308-1316
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control. 相似文献