首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several soft‐tissue imprints and attachment sites have been discovered on the inside of the shell wall and on the apertural side of the septum of various fossil and Recent ectocochleate cephalopods. In addition to the scars of the cephalic retractors, steinkerns of the body chambers of bactritoids and some ammonoids from the Moroccan and the German Emsian (Early Devonian) display various kinds of striations; some of these striations are restricted to the mural part of the septum, some start at the suture and terminate at the anterior limit of the annular elevation. Several of these features were also discovered in specimens of Mesozoic and Recent nautilids. These structures are here interpreted as imprints of muscle fibre bundles of the posterior and especially the septal mantle, blood vessels as well as the septal furrow. Most of these structures were not found in ammonoids younger than Middle Devonian. We suggest that newly formed, not yet mineralized (or only slightly), septa were more tightly stayed between the more numerous lobes and saddles in more strongly folded septa of more derived ammonoids and that the higher tension in these septa did not permit soft‐parts to leave imprints on the organic preseptum. It is conceivable that this permitted more derived ammonoids to replace the chamber liquid faster by gas and consequently, new chambers could be used earlier than in other ectocochleate cephalopods, perhaps this process began even prior to mineralization. This would have allowed faster growth rates in derived ammonoids.  相似文献   

2.
Molluscs such as ammonoids record their growth in their accretionary shells, making them ideal for the study of evolutionary changes in ontogeny through time. Standard methods usually focus on two‐dimensional data and do not quantify empirical changes in shell and chamber volumes through ontogeny, which can possibly be important to disentangle phylogeny, interspecific variation and palaeobiology of these extinct cephalopods. Tomographic and computational methods offer the opportunity to empirically study volumetric changes in shell and chamber volumes through ontogeny of major ammonoid sub‐clades in three dimensions (3‐D). Here, we document (1) the growth of chamber and septal volumes through ontogeny and (2) differences in ontogenetic changes between species from each of three major sub‐clades of Palaeozoic ammonoids throughout their early phylogeny. The data used are three‐dimensional reconstructions of specimens that have been subjected to grinding tomography. The following species were studied: the agoniatitid Fidelites clariondi and anarcestid Diallagites lenticulifer (Middle Devonian) and the Early Carboniferous goniatitid Goniatites multiliratus. Chamber and septum volumes were plotted against the septum number and the shell diameter (proxies for growth) in the three species; although differences are small, the trajectories are more similar among the most derived Diallagites and Goniatites compared with the more widely umbilicate Fidelites. Our comparisons show a good correlation between the 3‐D and the 2‐D measurements. In all three species, both volumes follow exponential trends with deviations in very early ontogeny (resolution artefacts) and near maturity (mature modifications in shell growth). Additionally, we analyse the intraspecific differences in the volume data between two specimens of Normannites (Middle Jurassic).  相似文献   

3.
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40–500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.  相似文献   

4.
Based on data derived from computed tomography, we demonstrate that integrating 2D and 3D morphological data from ammonoid shells represents an important new approach for investigating the palaeobiology of ammonoids. Characterization of ammonite morphology has long been constrained to 2D data, with only a few studies collecting ontogenetic data in 180° steps. Here we combine this traditional approach with 3D data collected from high‐resolution nano‐computed tomography. Ontogenetic morphological data on the hollow shell of a juvenile ammonite Kosmoceras (Jurassic, Callovian) was collected. 2D data was collected in 10° steps and show significant changes in shell morphology. Preserved hollow spines show multiple mineralized membranes never reported before, representing temporal changes in the ammonoid mantle tissue. 3D data show that chamber volumes do not always increase exponentially, as was generally assumed, but may represent a proxy for life events, such as stress phases. Furthermore, chamber volume cannot be simply derived from septal spacing in forms comparable to Kosmoceras. Vogel numbers represent a 3D parameter for chamber shape, and those for Kosmoceras are similar to other ammonoids (Arnsbergites, Amauroceras) and modern cephalopods (Nautilus, Spirula). Two methods to virtually document the suture line ontogeny, used to document phylogenetic relationships of larger taxonomic entities, were applied for the first time and present a promising alternative to hand drawings. The curvature of the chamber surfaces increases during ontogeny due to increasing strength of ornamentation and septal complexity. As this may allow for faster handling of cameral liquid, it could compensate for decreasing SA/V ratios through ontogeny.  相似文献   

5.
The magnitude and ontogenetic patterns of intraspecific variation can provide important insights into the evolution and development of organisms. Understanding the intraspecific variation of organisms is also a key to correctly pursuing studies in major fields of palaeontology. However, intraspecific variation has been largely overlooked in ectocochleate cephalopods, particularly nautilids. Furthermore, little is known regarding the evolutionary pattern. Here, we present morphological data for the Cretaceous nautilid Eutrephoceras dekayi (Morton) and the modern nautilid Nautilus pompilius Linnaeus through ontogeny. The data are used to describe conch morphology and to elucidate the evolutionary patterns of intraspecific variation. We discovered a similar overall pattern of growth trajectories and the presence of morphological changes at hatching and maturity in both taxa. We also found that intraspecific variation is higher in earlier ontogeny than in later ontogeny in both taxa. The high variation in earlier ontogeny may imply increased flexibility in changing the timing of developmental events, which probably played an important role in nautilid evolution. We assume that the decrease in variation in later ontogeny reflects developmental constraints. Lastly, we compared the similarity/dissimilarity of ontogenetic patterns of variation between taxa. Results reveal that the similarity/dissimilarity of the ontogenetic pattern differs between E. dekayi and N. pompilius. We conclude that this shift in the ontogenetic pattern of variation may be rooted in changes in the developmental programme of nautilids through time. We propose that studying ontogenetic patterns of intraspecific variation can provide new insights into the evolution and development of organisms.  相似文献   

6.
The skeletal structure, herein termed “connecting stripes”, is demonstrated in dried cuttlebones of Sepia (Acanthosepion) savignyi de Blainville from the Gulf of Aqaba, Red Sea, Eilat, Israel. This structure consists of segmented chitinous strip-like sheets covering the outside opening to the cuttlebone chambers. Scanning electron microscope images demonstrate that the connecting stripes are tightly attached to the neighbouring septa along the septal edges and do not continue from one chamber to the next. When broken, they leave band-like remnants along the attachment sites. The connecting stripes consist of fibrous, organic, possibly mainly chitinous, laminas. Chemical analysis using energy dispersive spectrometry shows that the connecting stripes contain C, O, Na, K but lack Ca and P. The connecting stripes show perceptible, usually barely visible micropores with diameter of ca. 0.1 μm; distances between the micropores are 0.2 to 0.3 μm. The connecting stripes in Sepia are similar to connecting rings in bactritoids and ammonoids in having a segmented structure and a non-mineralized, organic composition. The microporosity of connecting stripes observed in Sepia has been also recorded in three genera of Mesozoic ammonoids. The connecting stripes may serve as a transport route of the cameral liquid in and out of the chambers and are considered to be a homologue of the connecting rings in cephalopods with a fully developed siphonal tube.  相似文献   

7.
The following structural features clearly indicate that ammonoid shells were adapted to withstand considerably higher hydrostatic pressures thanNautilus shells: (1) the corrugated and marginally fluted septa gave the shell wall efficient support against implosion; (2) the secondary connecting rings could grow a great deal in thickness; and (3) the last formed chambers remained full of liquid which supported the last septum. On the basis of the following characters it is concluded that ammonoids were incapable of swimming efficiently by jet-propulsion: (1) the retractor muscles were weakly developed; (2) the life position was unstable and highly variable; and (3) in animals with a ventral apertural rostrum the hyponome was probably absent. Ammonoids are considered here as having been pelagic cephalopods which lived in the upper 1000 m of the oceans, and which probably undertook considerable diurnal vertical migrations, similar to those inSpirula. Only some groups may have adopted a life in shallow epicontinental seas. In the late Mesozoic, ammonoids have been replaced by modern oceanic squids which are extremely numerous in the corresponding pelagic environment.  相似文献   

8.
Ammonoids had high evolutionary rates and diversity throughout their entire history and played an important role in the high‐resolution sub‐division of the Mesozoic, but much of their palaeobiology remains unclear, including the brooding habitat. We present our study of the first recorded ammonite embryonic shell clusters preserved with calcified embryonic aptychi in situ within the body chambers of mature macroconch shells of the Early Aptian (Early Cretaceous) ammonite Sinzovia sazonovae. The following support the idea that the clusters are egg masses, which developed inside ammonite body chambers: the absence of post‐embryonic shells and any other fossils in these clusters, the presence of the aptychi in all embryonic shell apertures and peculiarities of adult shells preservation. These facts confirm earlier speculations that at least some ammonoids could have been ovoviviparous and that, like many modern cephalopods, they could have reproduced in mass spawning events. The aptychi of ammonite embryonic shells are observed here for the first time, indicating that they were already formed and calcified before hatching. Our results are fully congruent with the peculiar modes of ammonoid evolution: quick recovery after extinctions, distinct evolutionary rates, pronounced sexual dimorphism and the nearly constant size of embryonic shells through ammonoid history. We assume that adaptation to ovoviviparity may be the reason for the presence of these features in all post‐Middle Devonian ammonoids.  相似文献   

9.
《Geobios》2016,49(4):319-327
The mantle tissue is essential for understanding the diverse ecology and shell morphology of ammonoid cephalopods. Here, we report on irregular calcareous sheets in a well-preserved shell of a Late Cretaceous phylloceratid ammonoid Hypophylloceras subramosum from Hokkaido, Japan, and their significance for repairing the conch through the mantle inside the body chamber. The sheets are composed of nacreous layers arranged parallel to the irregularly distorted outer whorl surface. The nacreous sheets formed earlier are unevenly distributed and attached to the outer shell wall locally, whereas the last formed sheet covers a wide area of the outer shell wall. The absence of any interruption of ribbing around the irregular area suggests that these sheets were secreted inside the body chamber from the inner mantle. Gross morphological and X-ray computed tomography observations revealed that the spacing of septal formation was not affected by this event. The complex structure of the irregular sheets suggests a highly flexible mantle inside the body chamber.  相似文献   

10.
We measured longitudinal growth in conch cross‐sections of 177 Devonian to Jurassic ammonoid species to test whether conch ontogenetic development parallels the iterative evolution of pachyconic or globular conch shapes. Ontogenetic trajectories of two cardinal conch parameters, conch width index and umbilical width index, show a few common recurring ontogenetic pathways in terms of the number of ontogenetic phases. The most common, with three phases in the conch width index (decrease–increase–decrease) and umbilical width index (increase–decrease–increase), is termed here C‐mode ontogeny (after the Carboniferous genus Cravenoceras). Many of the studied globular Palaeozoic and Triassic species (of the latter, particularly the arcestid ammonoids) share principal patterns in the triphasic C‐mode conch ontogeny in closely related groups but also between unrelated groups as well. The repetition of conch growth patterns is an example of convergent evolution of the entire life history of globular ammonoids. The studied Jurassic globular shaped ammonoids deviate from the growth patterns seen in earlier groups showing less pronounced ontogenetic trajectories with nearly isometric or weakly asymmetric growth without distinct phases. This trajectory is termed here M‐mode ontogeny (after the Jurassic genus Macrocephalites). No major change in the ontogenetic modes of pachyconic and globular ammonoids occurred moving from the Palaeozoic into the Mesozoic; the survivors of the end‐Permian extinction event iteratively developed conch ontogenies similar to those of Palaeozoic forms. In contrast, the Triassic–Jurassic boundary marks the major event with the evolution of some cardinal conch parameters relating to globular ammonoid ontogeny.  相似文献   

11.
Stridsberg, Sven 1981 12 15: Apertural constrictions in some oncocerid cephalopods. Lethaia , Vol. 14, pp. 269–276. Oslo. ISSN 0024–1164.
In some oncocerid cephalopods the shape of the aperture, siphuncle and the general outline of the shell have long served as generic characters. The aperture is mostly elaborated into a certain number of sinuses which take their final shape only in the adult. Therefore, knowledge of the relative age of the animal is required. The last chamber may serve as an indicator of age. A last chamber smaller than the second last indicates a mature specimen. This is because continued growth would have caused the death of the animal as the buoyancy turned negative. Moreover, it is of great importance to study the growth lines along the peristome to observe whether growth has ceased or not. Growth variations have been compared with growth stages. Furthermore, a constricted or contracted aperture can only be determined on specimens with the shell still preserved. Functional parallels are drawn between the Aprychopsis operculum and the restricted aperture. * Cephalopoda, Oncorerida. aperture, ontogeny, growth lines, functional morphologv , Aptychopsis. Silurian, Gotland .  相似文献   

12.
This study is the first to report a trend of predation intensity on scaphitid ammonoids from the Turonian to the Maastrichtian (Late Cretaceous) on the basis of analysis of ventral shell breakage in large samples from the US Western Interior Province. Analysis of 835 adult specimens revealed ventral shell breakage in 50 specimens. In most of the damaged specimens, the breakage occurred in a preferred position at the rear part of the body chamber. Ventral breakage is rare in the Turonian specimens, whereas it is common in the Campanian and Maastrichtian specimens. The shell diameter of adult scaphitid ammonoids tends to increase with time. The position of the breakage and the absence of repairs indicate that the ventral breakage resulted from lethal predation. Based on the incidence of breakage and the size and shape of the breaks, possible predators include fish, reptiles and cephalopods such as Placenticeras, Eutrephoceras and coleoids. Our statistical analysis of ventral shell breakage indicates that the incidence of lethal predation increased in conjunction with an increase in adult shell size, suggesting that the body size of the prey was an important factor in predator–prey interactions. In addition, the predatory damage is more extensive in larger adults.  相似文献   

13.
Tsujino, Y & Shigeta, Y. 2012: Biological response to experimental damage of the phragmocone and siphuncle in Nautilus pompilius Linnaeus. Lethaia, Vol. 45, pp. 443–449. Three adult specimens of Nautilus pomplilius Linnaeus from the Philippines were experimented on to estimate the biological response to damage of the phragmocone and siphuncle in this cephalopod mollusc. In addition, the data obtained from the experiments were used for discussion of shell damage in ammonoids and in other extinct cephalopods. Specimen’s phragmocone and siphuncle were perforated and severed artificially, followed by observations in the laboratory tank during periods of 75 and 132 days. For at least 2 or 3 months, all individuals survived after damage to the phragmocone and siphuncle despite loss of neutral buoyancy. Based on our observations after completion of the experiments, the severed adoral remaining part of siphuncle healed by the siphunclar epithelium. In addition, perforation of the phragmocone was partly repaired by shell secretion from the dorsally extending mantle due to subsequent volution of shell growth. Our experiments revealed that damage to the phragmocone and siphuncle in Nautilus was not necessarily a lethal injury. It may be possible that such biological response also applies to extinct ammonoids and nautiloids. In a similar case of extinct ammonoids and nautiloids, damage to their phragmocone and siphuncle may also not have been a lethal injury as with Nautilus. However, some factors leading to death are likely to be dependent on the degree of damage to the phragmocone and siphuncle and influence of hydraulic pressure. □Ammonoids, injury, nautiloids, Nautilus, phragmocone, repair, siphuncle.  相似文献   

14.
An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small‐egged taxa, as is also seen in simultaneously evolving fish taxa.  相似文献   

15.
Ammonoids are diverse and widespread fossil, externally shelled cephalopods that flourished for more than 300 Myr before their total extinction 65 Ma ago. In spite of two centuries of intensive scientific studies, their mode(s) of life and long‐distance dispersal abilities remain poorly known. Here, we address this by focusing on the latitudinal distribution of Early Triassic (approximately 250 Myr) ammonoids through similarity‐distance decay analyses. We examine and compare rates of similarity‐distance decay between various groups with respect to systematics, shell geometry and ornamentation to untangle phylogenetic, geometric and ornamental imprints on the observed biogeographical pattern. Our data do not support any phylogenetic and shell ornamentation influence, but rather demonstrate the significant effect of (sub‐)adult shell geometry on the similarity–distance decay: most evolute morphs tend to have been more endemic than most involute forms. This contrasts with the classic hypothesis that long‐distance ammonoid dispersal mainly occurred during the earliest planktonic stages, and thus that (sub‐)adult morphological characteristics should not constrain large‐scale biogeographical patterns of ammonoids. Although direct control by Sea Surface Temperature can be discarded, this result may indicate that at least some adult Triassic ammonoid morphs were skilled active swimmers capable of achieving long‐distance migration, as observed for some present‐day coleoid cephalopods. □Ammonoid, dispersal, similarity‐distance decay, morphology, phylogeny, biogeography, Triassic.  相似文献   

16.
Inferences drawn from the biology, function, and behavior of closely related living forms facilitate interpretation of the mode of life of groups known only from the fossil record. The choice of phylogenetically relevant modern 'model organisms' can have critical bearing on the resulting interpretations. The biology and behavior of fossil ammonoids are often interpreted in the light of evidence derived from the study of modern Nautilus . However, examination of the fossil record and cladistic analyses both indicate that coleoids are much more closely related to ammonoids than is Nautilus . Coleoid biology and behavior differ dramatically from the biology and behavior of Nautilus . Thus, the inclusion of coleoids as examples, rather than reliance on Nautilus alone, produces a strikingly different vision of ammonoid biology and suggests that inferences of ammonoid biology and behavior that rely exclusively on Nautilus should be reviewed. Two features related to swimming ability in Nautilus , static stability and large retractor muscles, are much reduced in many ammonoids, leading to the interpretation that ammonoids were poorer swimmers than Nautilus . However, reexamination of the evidence indicates that static stability should not play a role in the swimming of ammonoids with long body chambers. In addition, functional arguments suggest that a coleoid-like swimming mechanism should have evolved prior to the loss of the body chamber in coleoids. Thus, a coleoid-like swimming mechanism is likely to have evolved prior to the separation of ammonoid and coleoid lineages. A mechanism is proposed by which a coleoid swimming mechanism, independent of retractor muscle size, could function in ammonoids with long body chambers.□ Ammonoids, ammonites, evolution, functional morphology , Nautilus, phylogeny .  相似文献   

17.
Abstract:  The meaning of modifications in septal spacing that often coincide with maturity in extant Nautilus and fossil nautiloids, and also in ammonoids, remains controversial. In the Callovian nautilid species Paracenoceras marocense Miller and Collinson, 1952 , the extent of decrease in septal spacing and the exceptional number of approximated septa are correlated with an unusual positive ontogenetic allometry in whorl-width expansion. This allometric growth implies that the threshold weight of the animal, requiring the formation of a new chamber to maintain near-neutral buoyancy, was reached for an increasingly shorter angular length of shell added to the aperture. Thus, the available space for the newly forming chamber behind the advancing body was reduced accordingly. Ontogenetic modifications in septal spacing are linked to relative growth of the animal. The flexibility in the mechanisms of buoyancy regulation would be expected to have been a critical factor affecting the possible set of ontogenetic trajectories in chambered cephalopods and thus the realm of variation upon which selection could act.  相似文献   

18.
The Triassic ammonoid Czekanowskites rieberi displays a covariation of morphological charac ters, which is rather common in ammonoids. Its morphological spectrum ranges from laterally compressed, involute, weakly ribbed forms to depressed, semiinvolute, strongly ribbed forms. In order to study this covariation, fifteen axially cut specimens have been analyzed by means of image analysis, which allows us to obtain the ontogenetic record of radii, area and perimeter of the individual whorl cross-sections. A logarithmic model of growth has been applied. Our data indicate that, owing to the covariation, the radii from the origin to the venter and to the umbil ical seam of a given whorl section vary inversely in order to maintain the relative position of the center of gravity of the whorl cross-section both throughout the ontogeny of single specimens and within the population. This influences hydrostatic parameters, such as the position of the center of mass and the orientation and stability of the shell. Since the ontogenetic record of the angular length of the body chamber is not known, we have calculated those hydrostatic varia bles using two mutually exclusive assumptions: (1) the angular length of the body chamber was constant throughout ontogeny and (2) the volume of the body chamber grew monotonically with the revolution angle. Fluctuations of the three hydrostatic variables were always less important in the first assumption. In any case, the spectrum of, for example, theoretical orien tations is comparable to those observed in the species of present-day Nautilus. The range of adult body-chamber length observed in C. rieberi is much narrower than the theoretical adult body-chamber length calculated under the second assumption which indicates that a certain control over this parameter existed in the natural population, probably in order to maintain a narrow range in orientation and stability. The excess or deficit in soft-body weight was probably compensated by inverse variations in shell-wall weight. The main conclusion is that, despite the extreme morphological variability, hydrostatic and, possibly, hydrodynamic properties of the population remained within narrow limits.  相似文献   

19.
During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.  相似文献   

20.
Externally shelled cephalopods were important elements in open marine habitats throughout Earth history. Paleotemperatures calculated on the basis of the oxygen isotope composition of their shells can provide insights into ancient marine systems as well as the ecology of this important group of organisms. In some sedimentary deposits, however, the aragonitic shell of the ammonite or nautilid is poorly or not preserved at all, while the calcitic structures belonging to the jaws are present. This study tests for the first time if the calcitic jaw structures in fossil cephalopods can be used as a proxy for paleotemperature. We first analyzed the calcitic structures on the jaws of Recent Nautilus and compared the calculated temperatures of precipitation with those from the aragonitic shell in the same individuals. Our results indicate that the jaws of Recent Nautilus are secreted in isotopic equilibrium, and the calculated temperatures approximately match those of the shell. We then extended our study to ammonites from the Upper Cretaceous (Campanian) Pierre Shale of the U.S. Western Interior and the age-equivalent Mooreville Chalk of the Gulf Coastal Plain. In the Pierre Shale, jaws occur in situ inside the body chambers of well-preserved Baculites while in the Mooreville Chalk, the jaw elements appear as isolated occurrences in the sediment and the aragonitic shell material is not preserved. For the Pierre Shale specimens, the calculated temperatures of well-preserved jaw material match those of well-preserved shell material in the same individual. Analyses of the jaw elements in the Mooreville Chalk permit a comparison of the paleotemperatures between the two sites, and show that the Western Interior is warmer than the Gulf Coast at that time. In summary, our data indicate that the calcitic jaw elements of cephalopods can provide a reliable geochemical archive of the habitat of fossil forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号