首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.  相似文献   

2.
Organic carbon (OC) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.  相似文献   

3.
Mechanisms of Carbon Sequestration in Soil Aggregates   总被引:12,自引:0,他引:12  
Soil and crop management practices have a profound impact on carbon (C) sequestration, but the mechanisms of interaction between soil structure and soil organic C (SOC) dynamics are not well understood. Understanding how an aggregate stores and protects SOC is essential to developing proper management practices to enhance SOC sequestration. The objectives of this article are to: (1) describe the importance of plants and soil functions on SOC sequestration, (2) review the mechanisms of SOC sequestration within aggregates under different vegetation and soil management practices, (3) explain methods of assessing distribution of SOC within aggregates, and (4) identify knowledge gaps with regards to SOC and soil structural dynamics. The quality and quantity of plant residues define the amount of organic matter and thus the SOC pool in aggregates. The nature of plant debris (C:N ratio, lignin content, and phenolic compound content) affects the rate of SOC sequestration. Mechanisms of interaction of aggregate dynamics with SOC are complex and embrace a range of spatial and temporal processes within macro- ( > 250 μ m e.c.d.) and microaggregates ( < 250 μ m e.c.d.). A relevant mechanism for SOC sequestration within aggregates is the confinement of plant debris in the core of the microaggregates. The C-rich young plant residues form and stabilize macroaggregates, whereas the old organic C is occluded in the microaggregates. Interactions of clay minerals with C rich humic compounds in correlation with clay mineralogy determine the protection and storage of SOC. Principal techniques used to assess the C distribution in aggregates include the determination of total organic C in different aggregate size fractions, isotopic methods to assess the turnover and storage of organic C in aggregates, and computed tomography and X-ray scattering to determine the internal porosity and inter-aggregate attributes. The literature is replete with studies on soil and crop management influences on total organic C and soil aggregation. However, research reports on the interactions of SOC within aggregates for C sequestration are scanty. Questions still remain on how SOC interacts physically and chemically with aggregates, and research is needed to understand the mechanisms responsible for the dynamics of aggregate formation and stability in relation to C sequestration.  相似文献   

4.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

5.
Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system.  相似文献   

6.
It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.  相似文献   

7.
Impacts of land use on soil organic C (SOC) are of interest relative to SOC sequestration and soil sustainability. The role of aggregate stability in SOC storage under contrasting land uses has been of particular interest relative to conventional tillage (CT) and no-till (NT) agriculture. This study compares soil structure and SOC fractions at the 30-yr-old Horseshoe Bend Agroecosystem Experiment (HSB). This research is unique in comparing NT and CT with adjacent land concurrently undergoing forest succession (FS) and in sampling to depths (15–28 cm) previously not studied at HSB. A soil moving experiment (SME) was also undertaken to monitor 1-yr changes in SOC and aggregation. After 30 years, enhanced aggregate stability under NT compared to CT was limited to a depth of 5 cm, while enhanced aggregate stability under FS compared to CT occurred to a depth of 28 cm and FS exceeded NT from 5–28 cm. Increases in SOC concentrations generally followed the increases in stability, except that no differences in SOC concentration were observed from 15–28 cm despite greater aggregate stability. Land use differences in SOC were explained equally by differences in particulate organic carbon (POC) and in silt-clay associated fine C. Enhanced structural stability of the SME soil was observed under FS and was linked to an increase of 1 Mg SOC ha−1 in 0–5 cm, of which 90% could be attributed to a POC increase. The crushing of macroaggregates in the SME soil also induced a 10% reduction in SOC over 1 yr that occurred under all three land uses from 5–15 cm. The majority of this loss was in the fine C fraction. NT and FS ecosystems had greater aggregation and carbon storage at the soil surface but only FS increased aggregation below the surface, although in the absence of increased carbon storage.  相似文献   

8.
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.  相似文献   

9.
Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0–10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q10) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q10 values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q10 values. Q10 values of the labile and recalcitrant organic C linearly increased with elevation. For the 5–15, 15–25, and 25–35°C intervals, surprisingly, the overall Q10 values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate.  相似文献   

10.
Denef  Karolien  Six  Johan  Merckx  Roel  Paustian  Keith 《Plant and Soil》2002,246(2):185-200
The mechanisms resulting in the binding of primary soil particles into stable aggregates vary with soil parent material, climate, vegetation, and management practices. In this study, we investigated short-term effects of: (i) nutrient addition (Hoagland's solution), (ii) organic carbon (OC) input (wheat residue), (iii) drying and wetting action, and (iv) root growth, with or without dry–wet cycles, on aggregate formation and stabilization in three soils differing in weathering status and clay mineralogy. These soils included a young, slightly weathered temperate soil dominated by 2:1 (illite and chlorite) clay minerals; a moderately weathered soil with mixed [2:1 (vermiculite) and 1:1 (kaolinite)] clay mineralogy and oxides; and a highly weathered tropical soil dominated by 1:1 (kaolinite) clay minerals and oxides. Air-dried soil was dry sieved through a 250 m sieve to break up all macroaggregates and 100 g-subsamples were brought to field capacity and incubated for 42 days. After 14 and 42 days, aggregate stability was measured on field moist and air-dried soil, to determine unstable and stable aggregation respectively. In control treatments (i.e., without nutrient or organic matter addition, without roots and at constant moisture), the formation of unstable and stable macroaggregates (> 250 m) increased in the order: 2:1 clay soil < mixed clay soil < 1:1 clay soil. After 42 days of incubation, nutrient addition significantly increased both unstable and stable macroaggregates in the 2:1 and 1:1 clay soils. In all soils, additional OC input increased both unstable and stable macroaggregate formation. The increase in macroaggregation with OC input was highest for the mixed clay soil and lowest for the 1:1 clay soil. In general, drying and wetting cycles had a positive effect on the formation of macroaggregates. Root growth caused a decrease in unstable macroaggregates in all soils. Larger amounts of macroaggregates were found in the mixed clay and oxides soil when plants were grown under 50% compared to 100% field capacity conditions. We concluded that soils dominated by variable charge clay minerals (1:1 clays and oxides) have higher potential to form stable aggregates when OC concentrations are low. With additional OC inputs, the greatest response in stable macroaggregate formation occurred in soils with mixed mineralogy, which is probably a result of different binding mechanisms occurring: i.e., electrostatic bindings between 2:1 clays, 1:1 clays and oxides (i.e. mineral-mineral bindings), in addition to OM functioning as a binding agent between 2:1 and 1:1 clays.  相似文献   

11.
毛乌素沙地沙漠化逆转过程土壤颗粒固碳效应   总被引:3,自引:0,他引:3  
为揭示毛乌素沙地沙漠化逆转过程中土壤颗粒的固碳效应,选择陕北榆林治沙区从流沙地、半固定沙地到林龄为20~55年生的灌木和20~50年生的乔木固沙林地,采用物理分组法分析了土壤砂粒、粉粒、黏粒结合碳的演变特征和累积速率.结果表明: 对比流沙地,土壤总有机碳及各颗粒碳含量在两种固沙林地均呈显著增加趋势,并以表层0~5 cm土壤碳含量增幅最高.从流沙地到55年生灌木和50年生乔木固沙林地,0~5 cm土层砂粒碳密度增速均为0.05 Mg·hm-2·a-1,粉粒碳密度增速分别为0.05和0.08 Mg·hm-2·a-1,而黏粒碳密度增速分别为0.02和0.03 Mg·hm-2·a-1.0~20 cm土层,两种林地各颗粒碳密度增速平均为0~5 cm土层的2.1倍.按此增速到50~55年生的固沙林地时,两种林地0~20 cm土层的砂粒碳、粉粒碳和黏粒碳密度分别比流沙地平均提高6.7、18.1、4.4倍,并且颗粒碳对总有机碳的累积贡献率平均为粉粒碳(39.7%)≈砂粒碳(34.6%)>黏粒碳(25.6%).综上,毛乌素沙地沙漠化逆转过程土壤颗粒均表现出显著的固碳效应,且以砂粒和粉粒为主要固碳组分.  相似文献   

12.
武夷山低海拔和高海拔森林土壤有机碳的矿化特征   总被引:2,自引:0,他引:2  
研究不同海拔土壤有机碳矿化对深入认识不同海拔森林土壤有机碳动态变化具有重要意义.本文以武夷山低海拔和高海拔森林土壤为研究对象,通过室内模拟其在各自年平均气温(17、9℃)条件下的矿化培养试验,探讨土壤有机碳矿化特征的差异.结果表明:培养126 d后,尽管高海拔森林土壤的有机碳含量显著高于低海拔森林土壤,但低海拔和高海拔森林土壤在各自环境温度背景下的有机碳累积矿化量并无显著差异.一级动力学方程均能较好地模拟高低海拔森林土壤有机碳矿化特征,高海拔和低海拔森林土壤有机碳潜在矿化量(CP)和矿化速率常数均无显著差异,但低海拔土壤C_P/SOC值和矿化率显著高于高海拔土壤,表明在环境温度背景下,低海拔土壤固碳能力低于高海拔土壤.随着培养时间增加,高海拔土壤微生物生物量碳和微生物熵显著高于低海拔土壤,表明高海拔土壤微生物的碳同化量高于低海拔土壤微生物,有利于有机碳的积累.高海拔森林土壤中的β-葡萄糖甘酶和纤维素水解酶高于低海拔森林土壤,说明高海拔土壤微生物可能更多地分解活性碳.未来气候变暖可能暗示着会降低高海拔土壤有机碳固碳能力和微生物碳利用效率,从而导致土壤有机碳储量下降.  相似文献   

13.
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 μ was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.  相似文献   

14.
Soil aggregates can provide an effective protection of organic matter against microbial decomposition as reported by several macroaggregate disruption studies. However, research on the role of aggregation for carbon mineralization was mainly focused on arable soils. In the present study we aim to clarify the impact of aggregation on organic matter protection by measuring carbon mineralization in terms of microbial respiration rates of intact macroaggregates (2–4 and 4–8 mm) and corresponding crushed aggregates from seven topsoil horizons from both arable and forest sites. For two arable and one forest soil we found a significantly (P < 0.001) lower carbon mineralization from intact aggregates as compared to the corresponding crushed material. The portion of aggregate protected carbon reached up to 30% for a grassland soil. For the other arable and forest soils no significant effect of aggregation was found. Similarly, no clear trend could be found for the protective capacity of different size fractions. We conclude that protection by aggregation is effective primarily for soils with a large pool of labile organic matter regardless of their usage as arable land or forest.  相似文献   

15.
Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark   总被引:1,自引:0,他引:1  
Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0−5, 5−15, 15−30, 30−60 and 60−100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg−1 was reported for 0−5 cm soil, whereas there was on average 2.2 g SOC kg−1 at 60−100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg−1 was found at 60−100 cm soil depth. Average SOC stock for 0−30 cm was 72 t ha−1 and in the top 1 m there was 120 t SOC ha−1. In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.  相似文献   

16.
Aggregation dynamics and soil organic carbon (SOC) fractions collected from long-term tillage trials at two sites in Illinois were used to develop a model to simulate the aggregate dynamics and physical protection of SOC. We used two litter pools which are surface litter and root litter and three SOC pools which are directly measurable from the fractionation: loose particulate organic matter (LPOM), aggregate-occluded particulate organic matter (OPOM), and humified fractions (HF). Decay rates of all of five pools were modified by soil temperature and moisture. In the model, the decay rate of LPOM was not influenced by any type of physical protection and the OPOM decay rate was influenced by dry aggregate mean weight diameter (DMWD) size. The effect of DMWD on OPOM decay rate was expressed as logistic equation based on the threshold value beyond which OPOM decay rate was influenced by the reactive mass concept which is that it is primarily outer layer of aggregates that participates in chemical and biological reactions. The decay of HF was influenced by clay contents. The relative aggregate turnover modified the humification coefficients. The faster aggregate turnover speeded the carbon transfer from LPOM to OPOM by providing more chances for organic matter to be incorporated with macroaggregates and retarded carbon transfer from OPOM to HF due to the fact that there is not enough time for organic mater to be associated with microaggregates and clay particles. Simulated results were compared against actual SOC fraction contents obtained from two long-term tillage trials located in Illinois, DeKalb (silty clay loam) and Monmouth (silt loam). Both actual and simulated data showed that after 10 and 17 years of no tillage (NT) practice adoption, OPOM content was increased at the surface in Monmouth and HF content was increased at the surface in DeKalb. Agreement between the output of aggregate dynamics-based model and actual data suggested that DMWD size, relative aggregate turnover, and their interaction with soil moisture and clay contents can be used to predict the inconsistent effects of tillage practices on SOC sequestration.  相似文献   

17.
Chenhua Li  Yan Li  Lisong Tang 《Plant and Soil》2013,369(1-2):645-656

Background and aims

Deeper soils represent a poorly understood, but potentially important, sink for carbon sequestration. The objective of this study was to determine the effects of long-term fertilization on soil organic carbon (SOC), its labile fractions and aggregate-associated carbon throughout a 0–3 m soil profile.

Methods

The investigation was conducted in a field experiment started in 1990 in an oasis farmland cropped with winter wheat. The following treatments were compared with the desert from which the oasis was created: CK (no fertilizer), NPK, N2P2K, NPKR, and N2P2R2 (“2” for double fertilizer and “R” for straw residue)

Results

SOC contents increased by 14–56 % in the topsoil (0–0.2 m), but decreased by 15–22 % in the subsoil (0.2–0.6 m) under all fertilizer treatments. In the deep layer (0.6–3 m) there were significant differences between the treatments: SOC decreased by 5–9 % in treatments without straw, but increased by 4–9 % in treatments with straw. Labile fractions (particulate organic carbon and light fraction organic carbon) also showed similar trends. Both the fertilizer and CK treatments led to an increase in the amount of macro-aggregates (>0.25 mm), especially small macro-aggregates (0.25–2 mm), throughout the soil profile. SOC content was highest in the macro-aggregates, intermediate in the silt + clay fraction (<0.053 mm), and lowest in the micro-aggregates (0.25–0.053 mm). However, 44–87 % of total SOC was stored in the silt + clay fraction, especially in the deep layer (at least 80 %).

Conclusions

After 20 years of fertilizer applications, difference in SOC mainly occurred in the deep layer, and preservation of SOC in the silt + clay fraction appeared to be a prerequisite for soil-carbon sequestration. Applying inorganic fertilizer alone decreased SOC content in the silt + clay fraction in the deep layer, while the combined applications with straw resulted in higher SOC content in the silt + clay fraction in that layer, which turned out to be the main mechanism for increasing SOC content. Our study indicated that applying straw with inorganic fertilizer is the best practice for carbon sequestration, which occurred mainly in the deep soil layer.  相似文献   

18.
为探究黑土团聚体内土壤有机碳(SOC)的“分馏”特征, 揭示不同植被覆盖下土壤团聚体的固碳机制, 该文以中国科学院海伦农业生态系统国家野外综合研究站内不同植被覆盖(草地、农田和裸地)长期定位实验的土样为研究对象, 利用团聚体湿筛分组、有机碳物理和化学分组相结合的方法, 研究了黑土团聚体及其内部的碳密度和腐殖质组分的碳分配特征。研究发现, 黑土经过不同植被覆盖31年后, 长期草地覆盖使土壤表层SOC、全氮(TN)含量显著增加, 农田和无植被覆盖的裸地SOC含量减少, 且在裸地显著降低。3种处理中, 2-0.25 mm (含2 mm, 下同)粒级团聚体均为优粒级。土壤团聚体的稳定性顺序为草地>农田>裸地。草地覆盖使土壤大团聚体的比例和有机碳库增加, 微团聚体和粉黏粒所占比例和碳库均减少, 说明草地覆盖促进了土壤大团聚体形成, 土壤固碳能力显著增强。而农田和裸地因外源碳投入少, 有机碳含量均是微团聚体>大团聚体>粉黏粒, SOC主要分布在微团聚体中。不同植被覆盖处理对土壤团聚体内密度组分和腐殖质各组分碳的富集“分馏”作用很明显, 与农田和裸地相比, 长期草地植被覆盖处理>2 mm和2-0.25 mm粒级团聚体中轻组碳含量富集的较多, 2-0.25 mm粒级团聚体中富里酸、胡敏酸和胡敏素的碳富集均最高, 而农田和裸地促进了微团聚体内腐殖质碳的富集。草地覆盖显著增加了大团聚体内活性有机碳组分, 来源于植物的碳首先进入到大粒径的团聚体中, 使土壤团聚结构显著改善, 农田和无植被覆盖的裸地土壤中轻组碳含量显著降低, 团聚体内有机碳以重组碳和胡敏素为主, 稳定化程度更高。  相似文献   

19.
Texture is an important influence on organic matter (SOM) dynamics in upland soils but little is known about its role in riverine soils. We hypothesized that texture might be especially important to SOM accumulation in young alluvial soils. We combined the soil component of the CENTURY ecosystem model, which uses sand, silt, and clay concentration as primary variables, with a simple simulation model of fluvial deposition, and forest production to predict changes in soil carbon (C) and nitrogen (N) during primary succession on floodplains and terraces of the Queets River, Washington. Simulated soil C accumulated to a plateau of about 4000 g m−2 at 110 years, closely matching observed patterns in an empirical chronosequence. Although direct fluvial OM deposition had only a small and short-lived influence on soil C, fluvial silt and clay deposition were an important influence on equilibrium C. The model underestimated soil N by about 35%, which appears to be due to failure of the model to account for N enrichment of an OM pool after its initial formation. These results suggest that basic influences on SOM retention in these young soils are not functionally different than those that apply to upland soils, but occur within highly dynamic physical contexts. Overbank deposition of silt and clay establishes a basic capacity for SOM retention. SOM, in turn, facilitates N retention. In this way, silt and clay are instrumental in propagating N forward from N-fixing red alder (Alnus rubra) stands to mature conifer forests that are frequently N-limited.  相似文献   

20.
Despite the fact that phosphorus (P) is critical for plant biomass production in many ecosystems, the implications of soil organic carbon (OC) sequestration for the P cycle have hardly been discussed yet. Thus, the aims of this study are, first, to synthesize results about the relationship between C and P in soil organic matter (SOM) and organic matter inputs to soils, second, to review processes that affect the C:P ratio of SOM, and third, to discuss implications of OC storage in terrestrial ecosystems for P sequestration. The study shows that the storage of OC in mineral soils leads to the sequestration of large amounts of organic phosphorus (OP) since SOM in mineral soils is very rich in P. The reasons for the strong enrichment of OP with respect to OC in soils are the mineralization of OC and the formation of microbial necromass that is P‐rich as well as the strong sorption of OP to mineral surfaces that prevents OP mineralization. In particular, the formation of mineral‐associated SOM that is favorable for storing OC in soil over decadal to centennial timescales sequesters large amounts of OP. Storage of 1,000 kg C in the clay size fraction in the topsoils of croplands sequesters 13.1 kg P. In contrast, the OC:OP ratios of wood and of peatlands are much larger than the ones in cropland soils. Thus, storage of C in wood in peatlands sequesters much less P than the storage of OC in mineral soils. In order to increase the C stocks in terrestrial ecosystems and to lock up as little P as possible, it would be more reasonable to protect and restore peatlands and to produce and preserve wood than to store OC in mineral soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号