首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By selectively regulating the expression of the trans-dominant-negative mutant polypeptide UL9-C535C, of herpes simplex virus type 1 (HSV-1) origin binding protein UL9 with the tetracycline repressor (tetR)-mediated gene switch, we recently generated a novel replication-defective and anti-HSV-specific HSV-1 recombinant, CJ83193. The UL9-C535C peptides expressed by CJ83193 can function as a potent intracellular therapy against its own replication, as well as the replication of wild-type HSV-1 and HSV-2 in coinfected cells. In this report, we demonstrate that CJ83193 cannot initiate acute productive infection in corneas of infected mice nor can it reactivate from trigeminal ganglia of mice latently infected by CJ83193 in a mouse ocular model. Given that CJ83193 is capable of expressing the viral alpha, beta, and gamma1 genes but little or no gamma2 genes, we tested the vaccine potential of CJ83193 against HSV-1 infection in a mouse ocular model. Our studies showed that immunization with CJ83193 significantly reduced the yields of challenge HSV in the eyes and trigeminal ganglia on days 3, 5, and 7 postchallenge. Like in mice immunized with the wild-type HSV-1 strain KOS, immunization of mice with CJ83193 prevents the development of keratitis and encephalitis induced by corneal challenge with wild-type HSV-1 strain mP. Delayed-type hypersensitivity (DTH) assays demonstrate that CJ83193 can elicit durable cell-mediated immunity at the same level as that of wild-type HSV-1 and is more effective than that induced by d27, an HSV-1 ICP27 deletion mutant. Moreover, mice immunized with CJ83193 developed strong, durable HSV-1-neutralizing antibodies at levels at least twofold higher than those induced by d27. The results presented in this report have shed new light on the development of effective HSV viral vaccines that encode a unique safety mechanism capable of inhibiting the mutant's own replication and that of wild-type virus.  相似文献   

2.
Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4(+) and CD8(+) T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease.  相似文献   

3.
Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

5.
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions.  相似文献   

6.
7.
8.
Herpes simplex virus 1 (HSV-1) causes herpes stromal keratitis (HSK), a sight-threatening disease of the cornea for which no vaccine exists. A replication-defective, HSV-1 prototype vaccine bearing deletions in the genes encoding ICP8 and the virion host shutoff (vhs) protein reduces HSV-1 replication and disease in a mouse model of HSK. Here we demonstrate that combining deletion of ICP8 and vhs with virus-based expression of B7 costimulation molecules created a vaccine strain that enhanced T cell responses to HSV-1 compared with the ICP8vhs parental strain, and reduced the incidence of keratitis and acute infection of the nervous system after corneal challenge. Post-challenge T cell infiltration of the trigeminal ganglia and antigen-specific recall responses in local lymph nodes correlated with protection. Thus, B7 costimulation molecules expressed from the genome of a replication-defective, ICP8vhs virus enhance vaccine efficacy by further reducing HSK.  相似文献   

9.
The replication of herpes simplex virus type 1 (HSV-1) DNA is associated with a high degree of homologous recombination. While cellular enzymes may take part in mediating this recombination, we present evidence for an HSV-1-encoded recombinase activity. HSV-1 alkaline nuclease, encoded by the UL12 gene, is a 5'-->3' exonuclease that shares homology with Redalpha, commonly known as lambda exonuclease, an exonuclease required for homologous recombination by bacteriophage lambda. The HSV-1 single-stranded DNA binding protein ICP8 is an essential protein for HSV DNA replication and possesses single-stranded DNA annealing activities like the Redbeta synaptase component of the phage lambda recombinase. Here we show that UL12 and ICP8 work together to effect strand exchange much like the Red system of lambda. Purified UL12 protein and ICP8 mediated the complete exchange between a 7.25-kb M13mp18 linear double-stranded DNA molecule and circular single-stranded M13 DNA, forming a gapped circle and a displaced strand as final products. The optimal conditions for strand exchange were 1 mM MgCl(2), 40 mM NaCl, and pH 7.5. Stoichiometric amounts of ICP8 were required, and strand exchange did not depend on the nature of the double-stranded end. Nuclease-defective UL12 could not support this reaction. These data suggest that diverse DNA viruses appear to utilize an evolutionarily conserved recombination mechanism.  相似文献   

10.
11.
12.
The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein.  相似文献   

13.
Regulatory function of the equine herpesvirus 1 ICP27 gene product.   总被引:4,自引:3,他引:1       下载免费PDF全文
The UL3 protein of equine herpesvirus 1 (EHV-1) KyA strain is a homolog of the ICP27 alpha regulatory protein of herpes simplex virus type 1 (HSV-1) and the ORF 4 protein of varicella-zoster virus. To characterize the regulatory function of the UL3 gene product, a UL3 gene expression vector (pSVUL3) and a vector expressing a truncated version of the UL3 gene (pSVUL3P) were generated. These effector plasmids, in combination with an EHV-1 immediate-early (IE) gene expression vector (pSVIE) and chimeric EHV-1 promoter-chloramphenicol acetyltransferase (CAT) reporter constructs, were used in transient transfection assays. These assays demonstrated that the EHV-1 UL3 gene product is a regulatory protein that can independently trans activate the EHV-1 IE promoter; however, this effect can be inhibited by the repressive function of the IE gene product on the IE promoter (R. H. Smith, G. B. Caughman, and D. J. O'Callaghan, J. Virol. 66:936-945, 1992). In the presence of the IE gene product, the UL3 gene product significantly augments gene expression directed by the promoters of three EHV-1 early genes (thymidine kinase; IR4, which is the homolog of HSV-1 ICP22; and UL3 [ICP27]) and the promoter of the EHV-1 late gene IR5, which is the homolog of HSV-1 US10. Sequences located at nucleotides -123 to +20 of the UL3 promoter harbor a TATA box, SP1 binding site, CAAT box, and octamer binding site and, when linked to the CAT reporter gene, are trans activated to maximal levels by the pSVIE construct in transient expression assays. Results from CAT assays also suggest that the first 11 amino acids of the UL3 protein are not essential for the regulatory function of the UL3 gene product.  相似文献   

14.
15.
16.
The herpes simplex type 1 (HSV-1) origin binding protein, the UL9 protein, exists in solution as a homodimer of 94-kDa monomers. It binds to Box I, the high affinity element of the HSV-1 origin, Oris, as a dimer. The UL9 protein also binds the HSV-1 single strand DNA-binding protein, ICP8. Photocross-linking studies have shown that although the UL9 protein binds Box I as a dimer, only one of the two monomers contacts Box I. It is this form of the UL9 homodimer that upon interaction with ICP8, promotes the unwinding of Box I coupled to the hydrolysis of ATP to ADP and Pi. Photocross-linking studies have also shown that the amount of UL9 protein that interacts with Box I is reduced by its interaction with ICP8. Antibody directed against the C-terminal ten amino acids of the UL9 protein inhibits its Box I unwinding activity, consistent with the requirement for interaction of the C terminus of the UL9 protein with ICP8. Inhibition by the antibody is enhanced when the UL9 protein is first bound to Box I, suggesting that the C terminus of the UL9 protein undergoes a conformational change upon binding Box I.  相似文献   

17.
ICP27 is an essential herpes simplex virus type 1 (HSV-1) alpha protein that is required for the transition from the beta to the gamma phase of infection. To identify functional regions of ICP27, we constructed 16 plasmids that contain nucleotide substitution mutations in the ICP27 gene. The mutations created XhoI restriction sites, altered one or two codons, and were spaced at semiregular intervals throughout the coding region. Three mutations completely inactivated an essential function of ICP27, as demonstrated by the inability of the transfected plasmids to complement the growth of an HSV-1 ICP27 deletion mutant. These mutations, M11, M15, and M16, mapped in the carboxyl-terminal one-third of ICP27 at residues 340 and 341, 465 and 466, and 488, respectively. In cotransfection assays, all three defective-plasmid mutants retained the transrepression function of ICP27 but were defective at transactivation. To define the lytic functions that are mediated by the transactivation activity of ICP27, we engineered HSV-1 recombinants containing the M11, M15, or M16 mutation. All three viral mutants failed to grow in Vero cells and possessed similar phenotypes. The viral mutants replicated their DNA similarly to the wild-type virus but showed several defects in viral gene expression. These were a failure to down-regulate alpha and beta genes at late times after infection and an inability to induce certain gamma-2 genes. Our results demonstrate that the transactivation function of ICP27 (as it is defined in cotransfection assays) mediates an essential gene regulation function during the HSV-1 infection. This activity is not required for ICP27-dependent enhancement of viral DNA replication. Our work supports and extends previous studies which suggest that ICP27 carries out two distinct regulatory activities during the HSV-1 infection.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a UL12 null mutant displays a severe growth defect. The HSV-1 alkaline exonuclease UL12 interacts with the viral single-stranded DNA binding protein ICP8 and promotes strand exchange in vitro in conjunction with ICP8. We proposed that UL12 and ICP8 form a two-subunit recombinase reminiscent of the phage lambda Red α/β recombination system and that the viral and cellular recombinases contribute to viral genome replication through a homologous recombination-dependent DNA replication mechanism. To test this hypothesis, we identified cellular interaction partners of UL12 by using coimmunoprecipitation. We report for the first time a specific interaction between UL12 and components of the cellular MRN complex, an important factor in the ATM-mediated homologous recombination repair (HRR) pathway. This interaction is detected early during infection and does not require viral DNA or other viral or cellular proteins. The region of UL12 responsible for the interaction has been mapped to the first 125 residues, and coimmunoprecipitation can be abolished by deletion of residues 100 to 126. These observations support the hypothesis that cellular and viral recombination factors work together to promote efficient HSV-1 growth.  相似文献   

19.
The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a null mutant of UL12 displays a severe growth defect. Although the precise in vivo role of UL12 has not yet been determined, several in vitro activities have been identified for the protein, including endo- and exonuclease activities, interaction with the HSV-1 single-stranded DNA binding protein ICP8, and an ability to promote strand exchange in conjunction with ICP8. In this study, we examined a naturally occurring N-terminally truncated version of UL12 called UL12.5. Previous studies showing that UL12.5 exhibits nuclease activity but is unable to complement a UL12 null virus posed a dilemma and suggested that UL12.5 may lack a critical activity possessed by the full-length protein, UL12. We constructed a recombinant baculovirus capable of expressing UL12.5 and purified soluble UL12.5 from infected insect cells. The purified UL12.5 exhibited both endo- and exonuclease activities but was less active than UL12. Like UL12, UL12.5 could mediate strand exchange with ICP8 and could also be coimmunoprecipitated with ICP8. The primary difference between the two proteins was in their intracellular localization, with UL12 localizing to the nucleus and UL12.5 remaining in the cytoplasm. We mapped a nuclear localization signal to the N terminus of UL12, the domain absent from UL12.5. In addition, when UL12.5 was overexpressed so that some of the enzyme leaked into the nucleus, it was able to partially complement the UL12 null mutant.  相似文献   

20.
The UL26 gene of herpes simplex virus type 1 (HSV-1) encodes a 635-amino-acid protease that cleaves itself and the HSV-1 assembly protein ICP35cd (F. Liu and B. Roizman, J. Virol. 65:5149-5156, 1991). We previously examined the HSV protease by using an Escherichia coli expression system (I. C. Deckman, M. Hagen, and P. J. McCann III, J. Virol. 66:7362-7367, 1992) and identified two autoproteolytic cleavage sites between residues 247 and 248 and residues 610 and 611 of UL26 (C. L. DiIanni, D. A. Drier, I. C. Deckman, P. J. McCann III, F. Liu, B. Roizman, R. J. Colonno, and M. G. Cordingley, J. Biol. Chem. 268:2048-2051, 1993). In this study, a series of C-terminal truncations of the UL26 open reading frame was tested for cleavage activity in E. coli. Our results delimit the catalytic domain of the protease to the N-terminal 247 amino acids of UL26 corresponding to No, the amino-terminal product of protease autoprocessing. Autoprocessing of the full-length protease was found to be unnecessary for catalysis, since elimination of either or both cleavage sites by site-directed mutagenesis fails to prevent cleavage of ICP35cd or an unaltered protease autoprocessing site. Catalytic activity of the 247-amino-acid protease domain was confirmed in vitro by using a glutathione-S-transferase fusion protein. The fusion protease was induced to high levels of expression, affinity purified, and used to cleave purified ICP35cd in vitro, indicating that no other proteins are required. By using a set of domain-specific antisera, all of the HSV-1 protease cleavage products predicted from studies in E. coli were identified in HSV-1-infected cells. At least two protease autoprocessing products, in addition to fully processed ICP35cd (ICP35ef), were associated with intermediate B capsids in the nucleus of infected cells, suggesting a key role for proteolytic maturation of the protease and ICP35cd in HSV-1 capsid assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号