首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons.  相似文献   

6.
7.
8.
In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP) modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, representatives of which have been shown to bind c-di-GMP in vitro. Herein, we examined the in vitro and in vivo function of the putative class I riboswitch in Vibrio cholerae, Vc1, which lies upstream of the gene encoding GbpA, a colonization factor that contributes to attachment of V. cholerae to environmental and host surfaces containing N-acetylglucosamine moieties. We provide evidence that Vc1 RNA interacts directly with c-di-GMP in vitro, and that nucleotides conserved among this class of riboswitch are important for binding. Yet the mutation of these conserved residues individually in the V. cholerae chromosome inconsistently affects the expression of gbpA and production of the GbpA protein. By isolating the regulatory function of Vc1, we show that the Vc1 element positively regulates downstream gene expression in response to c-di-GMP. Together these data suggest that the Vc1 element responds to c-di-GMP in vivo. Positive regulation of gbpA expression by c-di-GMP via Vc1 may influence the ability of V. cholerae to associate with chitin in the aquatic environment and the host intestinal environment.  相似文献   

9.
10.
11.
Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico.  相似文献   

12.
13.
In this paper we describe a biological indicator which can be used to study the behavior of Vibrio vulnificus, an important molluscan shellfish-associated human pathogen. A V. vulnificus ATCC 27562 derivative that expresses green fluorescent protein (GFP) and kanamycin resistance was constructed using conjugation. Strain validation was performed by comparing the GFP-expressing strain (Vv-GFP) and the wild-type strain (Vv-WT) with respect to growth characteristics, heat tolerance (45°C), freeze-thaw tolerance (−20o and −80°C), acid tolerance (pH 5.0, 4.0, and 3.5), cold storage tolerance (5°C), cold adaptation (15°C), and response to starvation. Levels of recovery were evaluated using nonselective medium (tryptic soy agar containing 2% NaCl) with and without sodium pyruvate. The indicator strain was subsequently used to evaluate the survival of V. vulnificus in oysters exposed to organic acids (citric and acetic acids) and various cooling regimens. In most cases, Vv-GFP was comparable to Vv-WT with respect to growth and survival upon exposure to various biological stressors; when differences between the GFP-expressing and parent strains occurred, they usually disappeared when sodium pyruvate was added to media. When V. vulnificus was inoculated into shellstock oysters, the counts dropped 2 log10 after 11 to 12 days of refrigerated storage, regardless of the way in which the oysters were initially cooled. Steeper population declines after 12 days of refrigerated storage were observed for both iced and refrigerated products than for slowly cooled product and product held under conservative harvest conditions. By the end of the refrigeration storage study (22 days), the counts of Vv-GFP in iced and refrigerated oysters had reached the limit of detection (102 CFU/oyster), but slowly cooled oysters and oysters stored under conservative harvest conditions still contained approximately 103 and >104 CFU V. vulnificus/oyster by day 22, respectively. The Vv-GFP levels in the oyster meat remained stable for up to 24 h when the meat was exposed to acidic conditions at various pH values. Ease of detection and comparability to the wild-type parent make Vv-GFP a good candidate for use in studying the behavior of V. vulnificus upon exposure to sublethal stressors that might be encountered during postharvest handling of molluscan shellfish.  相似文献   

14.
C-reactive protein (CRP) is a general marker of systemic inflammation and cardiovascular disease (CVD). The genetic contribution to differences in CRP levels remains to be explained, especially in non-European populations. Thus, the aim of this study was to identify genetic loci associated with CRP levels in Korean population. We performed genome-wide association studies (GWAS) using SNPs from 8,529 Korean individuals (7,626 for stage 1 and 903 for stage 2). We also performed pathway analysis. We identified a new genetic locus associated with CRP levels upstream of ARG1 gene (top significant SNP: rs9375813, Pmeta = 2.85×10−8), which encodes a key enzyme of the urea cycle counteract the effects of nitric oxide, in addition to known CRP (rs7553007, Pmeta = 1.72×10−16) and HNF1A loci (rs2259816, Pmeta = 2.90×10−10). When we evaluated the associations between the CRP-related SNPs with cardiovascular disease phenotypes, rs9375813 (ARG1) showed a marginal association with hypertension (P = 0.0440). To identify more variants and pathways, we performed pathway analysis and identified six candidate pathways comprised of genes related to inflammatory processes and CVDs (CRP, HNF1A, PCSK6, CD36, and ABCA1). In addition to the previously reported loci (CRP, HNF1A, and IL6) in diverse ethnic groups, we identified novel variants in the ARG1 locus associated with CRP levels in Korean population and a number of interesting genes related to inflammatory processes and CVD through pathway analysis.  相似文献   

15.
Real-Time PCR Analysis of Vibrio vulnificus from Oysters   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood.  相似文献   

16.
17.
18.
19.
20.
Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl and HCO3. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl and HCO3 secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号