首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.  相似文献   

2.
Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.  相似文献   

3.
To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of ~−13 kcal mol−1. This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions—especially van der Waals—favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins.  相似文献   

4.
Mechanics of the tapered interference fit in dental implants   总被引:1,自引:0,他引:1  
In evaluation of the long-term success of a dental implant, the reliability and the stability of the implant-abutment interface plays a great role. Tapered interference fits provide a reliable connection method between the abutment and the implant. In this work, the mechanics of the tapered interference fits were analyzed using a closed-form formula and the finite element (FE) method. An analytical solution, which is used to predict the contact pressure in a straight interference, was modified to predict the contact pressure in the tapered implant-abutment interface. Elastic-plastic FE analysis was used to simulate the implant and abutment material behavior. The validity and the applicability of the analytical solution were investigated by comparisons with the FE model for a range of problem parameters. It was shown that the analytical solution could be used to determine the pull-out force and loosening-torque with 5-10% error. Detailed analysis of the stress distribution due to tapered interference fit, in a commercially available, abutment-implant system was carried out. This analysis shows that plastic deformation in the implant limits the increase in the pull-out force that would have been otherwise predicted by higher interference values.  相似文献   

5.
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young’s modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson’s correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young’s modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.  相似文献   

6.
可渗透管网络非定常跨壁传输问题的解耦算法   总被引:1,自引:0,他引:1  
提出了可渗透管网络非定常跨壁传输问题的解耦算法,这是一种有限元法与初值问题Cauchy方法相结合的半解析算法。在一维管流的假设下,通过引入插值函数,得到用管外变量表示的管内变量的解析解,使最终导出的有限元方程中只包管外变量,从而减少了联立方程的数目,大大节省了计算时间,本方法特别适用于大型网络的数值计算。  相似文献   

7.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending.  相似文献   

8.
The carpal tunnel syndrome can cause severe pain and disability, both of which are avoidable if the condition is diagnosed and treated early in its course. Two sets of circumstances—delay in the correct diagnosis and recurrence of symptoms after an apparently successful operation—may give rise to problems in these aspects of management and delay recovery.  相似文献   

9.
10.
Analysis of viscoelastic properties of blood vessel walls presents difficult analytical problems in view of their non-homogeneity, anisotropy, and non-linear viscoelastic characteristics. The analytical technique used in this study is the numerical method of direct stiffness which has been successfully applied in preliminary studies. The direct stiffness method constitutes a finite element analysis, where the wall structure in an electron micrograph is represented by an assembly of triangular elements. Different material properties can be assigned to each triangular element; the method is thus ideally suited for computer analysis of non-homogeneous biological structures. Anatomical components considered in the analysis were two types of collagen fibers and smooth muscle cells. Typical circumferential stress-time and radius-time histories for selected points have been obtained in relaxed and constricted arterioles under static pressure loads. Plots of the stress distribution in cross sections of the vessel wall have been obtained in relaxed and constricted arterioles.  相似文献   

11.
Computational methods to predict RNA 3D structure have more and more practical applications in molecular biology and medicine. Therefore, it is crucial to intensify efforts to improve the accuracy and quality of predicted three-dimensional structures. A significant role in this is played by the RNA-Puzzles initiative that collects, evaluates, and shares RNAs built computationally within currently nearly 30 challenges. RNA-Puzzles datasets, subjected to multi-criteria analysis, allow revealing the strengths and weaknesses of computer prediction methods. Here, we study the issue of entangled RNA fragments in the predicted RNA 3D structure models. By entanglement, we mean an arrangement of two structural elements such that one of them passes through the other. We propose the classification of entanglements driven by their topology and components. It distinguishes two general classes, interlaces and lassos, and subclasses characterized by element types—loops, dinucleotide steps, open single-stranded fragments—and puncture multiplicity. Our computational pipeline for entanglement detection, applied for 1,017 non-redundant models from RNA-Puzzles, has shown the frequency of different entanglements and allowed identifying 138 structures with intersected assemblies.  相似文献   

12.
Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared using an idealised AAA geometry. There was good agreement between the numerical and experimental results. At the proximal and distal end of the AAA model, the maximum differences in principle strain for an internal pressure of 120 mmHg had differences ranging from 0.03 to 10.01%. The maximum difference in principle strain for the photoelastic and the finite element model at a pressure of 120 mmHg was 0.167 and 0.158, respectively. The current research strengthens the case for using FEA as an adjunct to the current clinical practice of utilising diameter measurement for intervention timing.  相似文献   

13.
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.  相似文献   

14.
15.
16.
Addition of a macromolecule to a solution will give rise to a large excluded volume for the centers of the solute molecules. This will cause an apparent increase in solute concentration which is of the same order of magnitude as that associated with the nonsolvent volumes reported in the literature. A critical examination of one of the procedures used for the determination of nonsolvent water—the vapor pressure method of Hill—is given, and it is concluded that, with the use of this method, it is impossible to detect any significant nonsolvent water surrounding bovine albumin for either sugars or polyols. Generally, data reported in the literature for the nonsolvent water of proteins or other macromolecules will be too high unless they are corrected for the excluded volume.  相似文献   

17.
Recent activity in finite element analysis of articular joints has emphasized refinements in geometry and material properties. In the implementation of such models, it is necessary to ensure that grid dimensions are optimal for suitable solutions of displacements, strains and stresses. A method of grid optimization was developed to ensure that for typical material properties, finite element models of an articular surface agree with known analytical solutions. The layered axisymmetric model presented by Askew and Mow (J. biomech. Engng 100, 105-115, 1978) was used as a reference. From this reference, an STZ of 0.2 mm, middle and deep zones of 0.8 mm and tidemark region of 0.2 mm were chosen. Cancellous bone was an infinite elastic half space under these layers. Loading was a parabolic distribution over a 10 mm radius having a peak of 1 MPa. Agreement was obtained between analytical solutions and finite element solutions when the finite element model had a radial boundary of 30 mm radius and a bone depth of 32 mm. These results suggested that in models of real joints, care must be taken to ensure the boundaries are reasonably represented and that sufficient bone is modelled for adequate solutions.  相似文献   

18.
Effects of Biomimetic Surface Designs on Furrow Opener Performance   总被引:1,自引:0,他引:1  
The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction ofmotion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designson tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dungbeetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo-lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Sevenfurrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces withUHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to theconventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and powerwere increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular sectionridges showed the lowest resistance and power requirement against soil..  相似文献   

19.
A finite element based method to determine the incremental elastic material properties of planar membranes was developed and evaluated. The method is applicable to tissues that exhibit inhomogeneity, geometric and material nonlinearity, and anisotropy. Markers are placed on the tissue to form a four-node quadrilateral element. The specimen is loaded to an initial reference state, then three incremental loading sets are applied and the nodal displacements recorded. One of these loadings must include shear. These data are used to solve an over-determined system of equations for the tangent stiffness matrix. The method was first verified using analytical data. Next, data obtained from a latex rubber sheet were used to evaluate experimental procedures. Finally, experiments conducted on preconditioned rat skin revealed nonlinear orthotropic behavior. The vector norm comparing the applied and calculated nodal force vectors was used to evaluate the accuracy of the solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号