首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.  相似文献   

2.
Summary Accumulating evidence confirms that nitric oxide (NO), a versatile diffusible signaling molecule, contributes to controling of adult neurogenesis. We have previously shown the timing of NADPH-diaphorase (NADPH-d) positivity within the rat rostral migratory stream (RMS) during the first postnatal month. The present study was designed to describe further age-related changes of NO presence in this neurogenic region. The presence of NO synthesizing cells in the RMS was shown by NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry. The phenotypic identity of nitrergic cells was examined by double labeling with GFAP and NeuN. Systematic qualitative and quantitative analysis of NADPH-d-positive cells was performed in the neonatal (P14), adult(5 months) and aging (20 months) rat RMS. 1. Nitrergic cells with different distribution pattern and morphological characteristics were present in the RMS at all ages examined. In neonatal animals, small, moderately stained NADPH-d-positive cells were identified in the RMS vertical arm and in the RMS elbow. In adult and aging rats a few labeled cells could be also detected in the RMS horizontal arm. NADPH-d-positive cells in adult and aging rats were characterized by long varicose processes and displayed dark labeling in comparison to the neonatal group. 2. Double immunolabeling has revealed that nNOS-immunoreactivity co-localized with that of NeuN. This indicates that nitrergic cells within the RMS are neurons. 3. Quantitative analysis showed that the number of NADPH-d-positive cells increases with advancing age. The presence of NO producing cells in the RMS of neonatal adult and aging rats indicates, that this proliferating and migratory area is under the influence of NO throughout the entire life of the animals.  相似文献   

3.
1. The aim of our study was to investigate the possibility that maternal separation, an experimental model for studies of early environmental influences, has an effect on postnatal neurogenesis in neurogenic pathway—the rostral migratory stream (RMS). 2. Rat pups were subjected to maternal separation daily for 3 h, starting from the first postnatal day (P1) till P14 or P21. In the first two groups, brains were analyzed at the age of P14 and P21, respectively. In the third group, after 3 weeks of maternal separation, 1 week of normal rearing was allowed, and the brains were analyzed at P28. The controls matched the age of maternally separated animals. Dividing cells were labeled by bromodeoxyuridine; dying cells were visualized by Fluoro-Jade C and nitric oxide (NO) producing cells by NADPH-diaphorase histochemistry. 3. Quantitative analysis of proliferating cells in the RMS showed that maternal separation decreased the number of dividing cells in all experimental groups. This decrease was most prominent in the caudal part of the RMS. The amount of dying cells was increased at the end of 3 weeks of maternal separation as well as 1 week later. The number of differentiated nitrergic cells in the RMS was increased at the end of 2 or 3 weeks of maternal separation, respectively. Besides quantitative changes, maternally separated animals showed an accelerated maturation of nitrergic cells. 4. Our results indicate that an exposure of rats to adverse environmental factors in early postnatal periods may induce acute site-specific changes in the RMS neurogenesis.  相似文献   

4.
Interneurons in the olfactory bulb (OB) are generated from neuronal precursor cells migrating from anterior subventricular zone (SVZa) not only in the developing embryo but also throughout the postnatal life of mammals. In the present study, we established an in vivo electroporation assay to label SVZa cells of rat both at embryonic and postnatal ages, and traced SVZa progenitors and followed their migration pathway and differentiation. We found that labeled cells displayed high motility. Interestingly, the postnatal cells migrated faster than the embryonic cells after applying this assay at different ages of brain development. Furthermore, based on brain slice culture and time-lapse imaging, we analyzed the detail migratory properties of these labeled precursor neurons. Finally, tissue transplantation experiments revealed that cells already migrated in subependymal zone of OB were transplanted back into rostral migratory stream (RMS), and these cells could still migrate out tangentially along RMS to OB. Taken together, these findings provide an in vivo labeling assay to follow and trace migrating cells in the RMS, their maturation and integration into OB neuron network, and unrecognized phenomena that postnatal SVZa progenitor cells with higher motility than embryonic cells, and their migration was affected by extrinsic environments.  相似文献   

5.
Summary One of the few areas of the adult CNS, that are known to be competent for neuronal proliferation, is the subventricular zone (SVZ) lining the brain lateral ventricles. Cells proliferating in the SVZ migrate along a defined pathway, the rostral migratory stream (RMS), where their proliferation continues until reaching the olfactory bulb.1. In relation to the fact that brain is, in general, regarded as a radioresistant organ composed from non dividing cells, the aim of the present study was to investigate effect of ionizing radiation on proliferating cell numbers in the RMS of adult rats.2. Male Wistar rats were investigated 25 and 80 days after whole body gamma irradiation with the dose of 3 Gy. Dividing cells were labeled by bromodeoxyuridine (BrdU). BrdU-positive cells were counted by Disector program. The mean number of BrdU+ cells in the whole RMS and in its individual parts (vertical arm, elbow, and horizontal arm) was evaluated.3. Temporary increase in proliferating cell number (by 30%) was seen in the whole RMS at the 25th day after irradiation.4. The most expressive increase occurred in the vertical arm (by 60%) and elbow (about 37%). The values reduced till the 80th day after exposure.Our results show that ionizing irradiation significantly influences the extent of cell proliferation and migration in the adult rat RMS.  相似文献   

6.
SUMMARY The objective of this study was to analyze neurogenesis in the rat rostral migratory stream (RMS) during the first postnatal month.1. During the early postnatal development some morphological changes, concerning the RMS thickness, shape, and the olfactory ventricle persistence at P0 were observed.2. Bromodeoxyuridine (BrdU) immunohistochemistry and subsequent quantification of proliferating cells showed significant age-dependent changes. The highest number of proliferating cells was found at P3 and significant decrease of BrdU-positive cells at P7 rats. At P28, the number of proliferating cells reached the level of P0 rats.  相似文献   

7.
The rostral migratory stream (RMS) is a migration route for neuroblasts originating in the richest neurogenic niche of the adult mammalian brain—the subventricular zone. Most studies are focused on cellular dynamics of migrating neuroblasts and interactions between neuroblasts and astrocytes which both represent the major cellular component of the RMS. Our previous experiments have brought evidence about the existence of a small population of mature neurons in the adult rat RMS with capacity to produce nitric oxide (NO). In order to further support functional significance of nitrergic cells, the aim of the present study was to determine whether NO producing neurons could form synapses. Sagittal sections from the adult rat brain were processed for simultaneous immunohistochemical detection of neuronal nitric oxide synthase (nNOS), the enzyme present in NO producing cells and synaptophysin, a glycoprotein found in synaptic vesicles. Synaptophysin positivity in the RMS was significantly lower in comparison with other brain areas, but its colocalization with nNOS-positive neurons was obvious. Our results suggest that nitrergic neurons in the RMS could be involved in a neuronal circuitry with potential impact on regulation of neurogenesis in the RMS.  相似文献   

8.
9.
10.
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.  相似文献   

11.
在疟疾流行区,L-精氨酸(L-Arg)被认为是一种对疟疾患者安全有效,能逆转内皮细胞功能紊乱的药物。实验主要研究L-Arg对实验性脑型疟疾的作用特点及其免疫调节作用。结果显示,与生理盐水对照组相比,在伯氏疟原虫(P.b ANKA)感染后给予L-Arg,C57BL/6小鼠的原虫血症水平降低,但存活时间却缩短。LArg处理后,脾脏中CD4+T-bet+IFN-γ+Th1细胞百分率显著性增加,同时脾细胞培养上清中IFN-γ、TNF-α以及NO水平也显著性提高。然而,L-Arg处理后未见Treg细胞的百分率及IL-10的显著性变化。由此提示,L-Arg通过增加小鼠的Th1应答,在脑型疟疾发生时加速小鼠的死亡。因此,应重新评估L-Arg对脑疟的防治效果。  相似文献   

12.
During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease.  相似文献   

13.
14.
15.
Angiotensin II, a peptide hormone that regulates blood pressure, has been proposed as a protective factor against cerebral malaria based on a genetic analysis. In vitro studies have documented an inhibitory effect of angiotensin II on Plasmodium growth, while studies using chemical inhibitors of angiotensin II in mice showed protection against experimental cerebral malaria but not major effects on parasite growth. To determine whether the level of angiotensin II affects Plasmodium growth and/or disease outcome in malaria, elevated levels of angiotensin II were induced in mice by intradermal implantation of osmotic mini-pumps providing constant release of this hormone. Mice were then infected with P. berghei and monitored for parasitemia and incidence of cerebral malaria. Mice infused with angiotensin II showed decreased parasitemia seven days after infection. The development of experimental cerebral malaria was delayed and a moderate increase in survival was observed in mice with elevated angiotensin II, as confirmed by decreased number of cerebral hemorrhages compared to controls. The results presented here show for the first time the effect of elevated levels of angiotensin II in an in vivo model of malaria. The decreased pathogenesis observed in mice complements a previous human genetic study, reinforcing the hypothesis of a beneficial effect of angiotensin II in malaria.  相似文献   

16.

Background

The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls.

Methods

To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA.

Results

Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals.

Conclusions

Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.  相似文献   

17.
18.
19.
20.
探讨苯肼(Phenylhydrazine,PHZ)对实验性脑疟模型DC亚群及功能的影响。采用伯氏疟原虫(Plasmodium berghei ANKA,Pb ANKA)感染C57BL/6小鼠建立实验性脑疟模型,并在感染前第5天和感染第0天进行苯肼处理。动态监测小鼠网织红细胞数量、原虫血症和生存期;采用FACS检测感染后第3天和第5天小鼠脾脏中DC亚群(m DCs和p DCs)及相关功能分子(CD86、MHC II和IL-2)的变化水平。结果显示,PHZ处理能显著升高血液中网织红细胞比例,同时会升高小鼠原虫血症水平,缩短生存期;在感染后第3天和第5天,PHZ处理能促进Pb ANKA感染小鼠m DCs和p DCs的增殖分化,并能增强MHC II类分子和胞内IL-12的表达水平。PHZ引起的贫血能促进DCs的分化,同时促进功能分子的表达升高来启动适应型免疫应答,促进脑疟发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号