首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The United States is rapidly expanding production of renewable energy to meet increased energy demands and reduce greenhouse gas emissions. Wind energy is at the forefront of this transition. A central challenge is understanding the nexus between wind energy development and its capacity for negative effects on wildlife causing population declines and habitat loss. Collaboration among conservationists and developers, early in the planning process, is crucial for minimizing wind-wildlife conflicts. Such collaborations require data showing where wind and wildlife impacts occur. To meet this challenge and inform decision-making, we provide natural resource agencies and stakeholders information regarding where future wind turbines may occur, and the potential affects on natural resource management, including the conservation of priority species and their habitats. We developed a machine learning model predicting suitability of wind turbine occurrence (hereafter, wind turbine suitability) across an eight-state region in the United States, representing some of the richest areas of wind potential. Our model incorporates predictor variables related to infrastructure, land ownership, meteorology, and topography. We additionally created a constraint layer indicating areas where wind would likely not be developed because of zoning, protected lands, and restricted federal agency proximity guidelines. We demonstrate how the predictive wind turbine suitability model informs conservation planning by incorporating animal movement models, relative abundance models coupled with spatial conservation planning software, and population density models for three exemplar, high priority species often affected by wind energy: whooping cranes (Grus americana), golden eagles (Aquila chrysaetos), and lesser prairie-chickens (Tympanuchus pallidicinctus). By merging the wind turbine and biological models, we identified conservation priority areas (i.e., places sharing high suitability for wind turbines and species use), and places where wind expansion could minimally affect these species. We use our “species-wind turbine occurrence relationships” to demonstrate applications, illustrating how forecasting areas of wind turbine suitability promotes wildlife conservation. These relationships inform wind energy siting to reduce negative ecological impacts while promoting environmental and economic viability.  相似文献   

2.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (?79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.  相似文献   

3.
Wind farms are steadily growing across Europe, with potentially detrimental effects on wildlife. Indeed, cumulative impacts in addition to local effects should be considered when planning wind farm development at a regional scale, and mapping the potential risk to bats at this scale would help in the large-scale planning of wind turbines and focus field surveys on vulnerable areas. Although modelling offers a powerful approach to tackle this goal, its application has been thus far neglected. We developed a simple regional-scale analysis in an area of central Italy (Molise region) that is undergoing considerable wind farm development. We implemented species distribution models (SDMs) for two bat species vulnerable to wind farm impact, Nyctalus leisleri and Pipistrellus pipistrellus. We developed risk maps by overlaying SDMs for the two species with turbine locations, assessed the alteration of the landscape patterns of foraging habitat patches determined by the wind turbines, and identified highly vulnerable areas where wind farm construction would be particularly risky. SDMs were statistically robust (AUC ≥0.8 for both species) and revealed that 41 % of the region offers suitable foraging habitat for both species. These areas host over 50 % of the existing or planned wind farms, with 21 % of the turbines located within 150 m of forest edges, suggesting an increase in fatality risk. The alterations in suitable foraging patches consisted of a 7.7 % increase in the number of patches, a 10.7 % increase in the shape index, and a 8.1 % decrease in the mean patch area. The region’s western portion, which is most suitable to both species, requires careful consideration with regard to future wind farm planning.  相似文献   

4.
We used predictive modeling of species distributions to identify conservation priority areas in the equatorial Pacific region of western Ecuador and northwestern Peru. Museum and herbarium data and predictive models of species distributions are increasingly being used to assess the conservation status of individual species. In this study, we assembled occurrence data for 28 species of vascular plants, birds, and mammals to assess the conservation priorities of the set of natural communities that they represent. Environmental variables were used to predict the species’ distributions using correlative modeling as an alternative to point data, which has been the traditional approach to identify critical areas. Specific priority sites for conservation were identified using an area-selection algorithm based on simulated annealing. Four scenarios of prioritization were created using different criteria for the spatial compactness of the selected sites and fragmentation of remnant habitat. The results provide a preliminary assessment of conservation priorities for the dry ecosystems of the Equatorial Pacific region, and will serve as guidelines to focus future fieldwork.  相似文献   

5.
Wind power is a fast-growing energy source for electricity production, and some environmental impacts (e.g. noise and bird collision) are pointed out. Despite extensive land use (2600–6000 m2/MW), it is said that most of these impacts have been resolved by technological development and proper site selection. The results in this paper suggest that: (i) wind farms kill millions of birds yearly around the world, and the high mortality of rare raptors is of particular concern; (ii) wind farms on migration routes are particularly dangerous, and it is difficult to find a wind power site away from migration routes because there is no guarantee that migration routes will not vary; (iii) according to the presented model of collision probability, the rotor speed does not make a significant difference in collision probability; the hub is the most dangerous part, and large birds (e.g. raptors) are at great risk; and, (iv) based on the field observation of squirrels’ vocalisation (i.e. anti-predator behaviour), there are behavioural differences between squirrels at the wind turbine site and those at the control site. Noise from wind turbines (when active) may interfere with the lives of animals beneath the wind turbines.

US Government guidelines and the Bern Convention's report have described adverse impacts of wind energy facilities on wildlife and have put forward recommendations. In addition to these documents, the following points derived from the discussion in this paper should be noted for the purpose of harmonising wind power generation with wildlife conservation: (i) engineers need to develop a turbine form to reduce the collision risk at the hub; (ii) institute long-term monitoring, including a comparison between bird mortality before and after construction; and (iii) further evaluate impacts of turbine noise on anti-predator wildlife vocalisations.  相似文献   


6.
Automated curtailment of wind turbines can reduce fatality rates of wildlife but the resulting increased number of curtailments can reduce power generation. Tailoring curtailment criteria for each individual turbine could reduce unnecessary curtailment, yet it is unknown whether the risk to wildlife varies among turbines. We demonstrate turbine-specific variation in the speed, altitude, approach angle and distance metrics associated with entry by eagles into rotor-swept zones. Our results thus illustrate the potential value of turbine-specific curtailment criteria to reduce fatality rates of wildlife at wind energy facilities.  相似文献   

7.
Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species’ range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.  相似文献   

8.
Understanding what constitutes high quality habitat is crucial for the conservation of species, especially those threatened with extinction. Habitat quality frequently is inferred by comparing the attributes of sites where a species is present with those where it is absent. However, species presence may not always indicate high quality habitat. Demographic parameters are likely to provide a more biologically relevant measure of quality, including a species’ ability to successfully reproduce. We examined factors believed to influence territory quality for the grey-crowned babbler (Pomatostomus temporalis), a cooperatively breeding woodland bird that has experienced major range contraction and population decline in south-eastern Australia. Across three broad regions, we identified active territories and determined the presence of fledglings and the size of family groups, as surrogates of territory quality. These measures were modelled in relation to habitat attributes within territories, the extent of surrounding wooded vegetation, isolation from neighbouring groups, and the size of the neighbourhood population. Fledgling presence was strongly positively associated with group size, indicating that helpers enhance breeding success. Surprisingly, no other territory or landscape-scale variables predicted territory quality, as inferred from either breeding success or group size. Relationships between group size and environmental variables may be obscured by longer-term dynamics in group size. Variation in biotic interactions, notably competition from the noisy miner (Manorina melanocephala), also may contribute. Conservation actions that enhance the number and size of family groups will contribute towards reversing declines of this species. Despite associated challenges, demographic studies have potential to identify mechanistic processes that underpin population performance; critical knowledge for effective conservation management.  相似文献   

9.
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.  相似文献   

10.
Social behaviors can significantly affect population viability, and some behaviors might reduce extinction risk. We used population viability analysis to evaluate effects of past and proposed habitat loss on the White-breasted Thrasher (Ramphocinclus brachyurus), a cooperatively breeding songbird with a global population size of <2000 individuals. We used an individual-based approach to build the first demographic population projection model for this endangered species, parameterizing the model with data from eight years of field study before and after habitat loss within the stronghold of the species’ distribution. The recent habitat loss resulted in an approximately 18% predicted decline in population size; this estimate was mirrored by a separate assessment using occupancy data. When mortality rates remained close to the pre-habitat loss estimate, quasi-extinction probability was low under extant habitat area, but increased with habitat loss expected after current plans for resort construction are completed. Post-habitat loss mortality rate estimates were too high for projected populations to persist. Vital rate sensitivity analyses indicated that population growth rate and population persistence were most sensitive to juvenile mortality. However, observed values for adult mortality were closest to the threshold value above which populations would crash. Adult mortality, already relatively low, may have the least capacity to change compared to other vital rates, whereas juvenile mortality may have the most capacity for improvement. Results suggest that improving mortality estimates and determining the cause(s) of juvenile mortality should be research priorities. Despite predictions that aspects of cooperative systems may result in variation in reproduction or juvenile mortality being the most sensitive vital rates, adult mortality was the most sensitive in half of the demographic models of other avian cooperative breeders. Interestingly, vital rate sensitivity differed by model type. However, studies that explicitly modeled the species’ cooperative breeding system found reproduction to be the most sensitive rate.  相似文献   

11.
风力发电对鸟类的影响以及应对措施   总被引:2,自引:0,他引:2  
风能是一种清洁而稳定的可再生能源,风力发电可以减少全球温室气体排放,在减缓气候变化中发挥重要作用。然而,风电场的建设会对自然保护、生态环境和动物生存会造成一定的负面影响,其中对鸟类的影响尤为突出。本文通过查阅欧美等国风电场对鸟类及野生动物影响的研究文献,总结了风电场对鸟类的生存、迁徙和栖息地环境的影响,以及导致鸟类与风电塔相撞的影响因素,并提出了相关防范措施和方法。近十年中国风力发电事业发展迅猛,已经成为世界上风电装机容量最大的国家,但中国在评估风电场发展对野生动物影响方面的研究工作非常匮乏。目前,我国应借鉴国外相关研究管理经验,通过长期的连续观测,认真评估国内正在运行和在建风电场对于鸟类和其他野生动物的影响及潜在威胁。同时,应重视鸟类迁徙的基础研究,为新建风电场选址提供科学方案,保证风力发电与生态环境保护之间的和谐发展。  相似文献   

12.
ABSTRACT As wind power generation is rapidly expanding worldwide, there is a need to understand whether and how preconstruction surveys can be used to predict impacts and to place turbines to minimize impacts to birds. Wind turbines in the 165-km2 Altamont Pass Wind Resource Area (APWRA), California, USA, cause thousands of bird fatalities annually, including hundreds of raptors. To test whether avian fatality rates related to rates of utilization and specific behaviors within the APWRA, from March 1998 to April 2000 we performed 1,959 30-minute behavior observation sessions (360° visual scans using binoculars) among 28 nonoverlapping plots varying from 23 ha to 165 ha in area and including 10–67 turbines per plot, totaling 1,165 turbines. Activity levels were highly seasonal and species specific. Only 1% of perch time was on towers of operating turbines, but 22% was on towers of turbines broken, missing, or not operating. Of those species that most often flew through the rotor zone, fatality rates were high for some (e.g., 0.357 deaths/megawatt of rated capacity [MW]/yr for red-tailed hawk [Buteo jamaicensis] and 0.522 deaths/MW/yr for American kestrel [Falco sparverius]) and low for others (e.g., 0.060 deaths/MW/yr for common raven [Corvus corax] and 0.012 deaths/MW/yr for turkey vulture [Cathartes aura]), indicating specific behaviors or visual acuity differentiated these species by susceptibility to collision. Fatality rates did not correlate with utilization rates measured among wind turbine rows or plots for any species except burrowing owl (Athene cunicularia) and mallard (Anas platyrhynchos). However, mean monthly fatality rates of red-tailed hawks increased with mean monthly utilization rates (r2 = 0.67) and especially with mean monthly flights through turbine rows (r2 = 0.92). Fatality rates increased linearly with rates of utilization (r2 = 0.99) and flights near rotor zones (r2 = 1.00) for large raptor species and with rates of perching (r2 = 0.13) and close flights (r2 = 0.77) for small non-raptor species. Fatalities could be minimized or reduced by shutting down turbines during ≥1 season or in very strong winds or by leaving sufficiently large areas within a wind farm free of wind turbines to enable safer foraging and travel by birds.  相似文献   

13.
Bats are considered important bioindicators and deliver key ecosystem services to humans. However, it is not clear how the individual and combined effects of climate change and land-use change will affect their conservation in the future. We used a spatial conservation prioritization framework to determine future shifts in the priority areas for the conservation of 169 bat species under projected climate and land-use change scenarios across Africa. Specifically, we modelled species distribution models under four different climate change scenarios at the 2050 horizon. We used land-use change scenarios within the spatial conservation prioritization framework to assess habitat quality in areas where bats may shift their distributions. Overall, bats’ representation within already existing protected areas in Africa was low (∼5% of their suitable habitat in protected areas which cover ∼7% of Africa). Accounting for future land-use change resulted in the largest shift in spatial priority areas for conservation actions, and species representation within priority areas for conservation actions decreased by ∼9%. A large proportion of spatial conservation priorities will shift from forested areas with little disturbance under present conditions to agricultural areas in the future. Planning land use to reduce impacts on bats in priority areas outside protected areas where bats will be shifting their ranges in the future is crucial to enhance their conservation and maintain the important ecosystem services they provide to humans.  相似文献   

14.
ABSTRACT For comparing impacts of bird and bat collisions with wind turbines, investigators estimate fatalities/megawatt (MW) of rated capacity/year, based on periodic carcass searches and trials used to estimate carcasses not found due to scavenger removal and searcher error. However, scavenger trials typically place ≥10 carcasses at once within small areas already supplying scavengers with carcasses deposited by wind turbines, so scavengers may be unable to process and remove all placed carcasses. To avoid scavenger swamping, which might bias fatality estimates low, we placed only 1–5 bird carcasses at a time amongst 52 wind turbines in our 249.7-ha study area, each carcass monitored by a motion-activated camera. Scavengers removed 50 of 63 carcasses, averaging 4.45 days to the first scavenging event. By 15 days, which corresponded with most of our search intervals, scavengers removed 0% and 67% of large-bodied raptors placed in winter and summer, respectively, and 15% and 71% of small birds placed in winter and summer, respectively. By 15 days, scavengers removed 42% of large raptors as compared to 15% removed in conventional trials, and scavengers removed 62% of small birds as compared to 52% removed in conventional trials. Based on our methodology, we estimated mean annual fatalities caused by 21.9 MW of wind turbines in Vasco Caves Regional Preserve (within Altamont Pass Wind Resource Area, California, USA) were 13 red-tailed hawks (Buteo jamaicensis), 12 barn owls (Tyto alba), 18 burrowing owls (Athene cunicularia), 48 total raptors, and 99 total birds. Compared to fatality rates estimated from conventional scavenger trials, our estimates were nearly 3 times higher for red-tailed hawk and barn owl, 68% higher for all raptors, and 67% higher for all birds. We also found that deaths/gigawatt-hour of power generation declined quickly with increasing capacity factor among wind turbines, indicating collision hazard increased with greater intermittency in turbine operations. Fatality monitoring at wind turbines might improve by using scavenger removal trials free of scavenger swamping and by relating fatality rates to power output data in addition to rated capacity (i.e., turbine size). The resulting greater precision in mortality estimates will assist wildlife managers to assess wind farm impacts and to more accurately measure the effects of mitigation measures implemented to lessen those impacts.  相似文献   

15.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

16.
To conserve a declining species we first need to diagnose the causes of decline. This is one of the most challenging tasks faced by conservation practitioners. In this study, we used temporally explicit species distribution models (SDMs) to test whether shifting weather can explain the recent decline of a marsupial carnivore, the eastern quoll (Dasyurus viverrinus). We developed an SDM using weather variables matched to occurrence records of the eastern quoll over the last 60 years, and used the model to reconstruct variation through time in the distribution of climatically suitable range for the species. The weather model produced a meaningful prediction of the known distribution of the species. Abundance of quolls, indexed by transect counts, was positively related to the modelled area of suitable habitat between 1990 and 2004. In particular, a sharp decline in abundance from 2001 to 2003 coincided with a sustained period of unsuitable weather over much of the species’ distribution. Since 2004, abundance has not recovered despite a return to suitable weather conditions, and abundance and area of suitable habitat have been uncorrelated. We suggest that fluctuations in weather account for the species’ recent decline, but other unrelated factors have suppressed recovery.  相似文献   

17.
The rapid development of wind energy may have negative effects on bird populations, including collisions with turbines, displacement due to disturbance or habitat loss, indirect effects of reduced breeding success and barrier effects. This challenging conservation issue has attracted a great deal of interest, but the noise generated by turbines has been largely overlooked. Here, we studied acoustic behaviour of Skylarks Alauda arvensis in relation to wind farm start‐up to assess whether a change in song parameters can indicate a deterioration in the acoustic environment. We recorded territorial males displaying close to operating and non‐operating turbines and at a control site without turbines. In the following breeding season, we undertook replications at the same sites, except that the non‐operating turbines were now in operation. We found that Skylarks displaying at the wind farm were affected by wind turbine noise. Males singing close to operating wind turbines sang higher‐frequency songs than males from a control site and those that displayed near non‐operating turbines. In addition, an upward frequency shift in songs was observed when non‐operating turbines started to operate in the consecutive season. We therefore conclude that the frequency shift observed did not result from turbine presence, but from the noise they started to generate. This shows that a change in song parameters may reliably and within a relatively short time indicate a significant deterioration of the acoustic environment as a consequence of wind farm start‐up. This may help conservation biologists to identify species and populations that are particularly susceptible to wind farm noise.  相似文献   

18.
We currently have a meager understanding of the species attributes viewed as important for conservation by children, despite the fact that arguments for biodiversity conservation often hinge on the bequest value of species. We conducted a study of children between the ages of 4 and 14 (N = 183) on Andros Island, The Bahamas to determine how they prioritized wildlife species for conservation based on five attributes: endemism, use for hunting and fishing, rapid decline in population size, visibility around their home, and ecological significance. Children tended to rank ecological significance as the most important attribute for prioritizing wildlife for protection, followed closely by endemism, with other attributes being less important and not significantly different from one another. However, participants in a local environmental education program (N = 67) placed greater prioritization to species experiencing rapid population declines. We also found that boys prioritized use for hunting and fishing as more important for conservation than girls, older children placed greater importance on species with declining numbers and less importance on visibility of animals around their house, and children who had previously fished placed greater importance on endemism. These findings help elucidate how children value biodiversity, and suggest children’s conservation priorities may align relatively well with those of conservation biologists, especially after exposure to environmental education. We suggest that better understanding how children prioritize wildlife attributes for conservation can lead to more informed biodiversity conservation decisions and more effective policy implementation, as the perspectives of children can help bridge the gap between public opinion and scientific opinion.  相似文献   

19.
Biodiversity is undergoing unprecedented global decline. Efforts to slow this rate have focused foremost on rarer species, which are at most risk of extinction. Less interest has been paid to more common species, despite their greater importance in terms of ecosystem function and service provision. How rates of decline are partitioned between common and less abundant species remains unclear. Using a 30‐year data set of 144 bird species, we examined Europe‐wide trends in avian abundance and biomass. Overall, avian abundance and biomass are both declining with most of this decline being attributed to more common species, while less abundant species showed an overall increase in both abundance and biomass. If overall avian declines are mainly due to reductions in a small number of common species, conservation efforts targeted at rarer species must be better matched with efforts to increase overall bird numbers, if ecological impacts of birds are to be maintained.  相似文献   

20.
In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species’ potential distributions based on suitable habitats, especially when native environments are rare. Species’ dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species’ survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB) at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris) of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species’ extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species’ habitat requirements at two scales: home range (HR) and within the home range (WHR). We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs. availability. We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号