首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Intestinal barrier failure may lead to systemic inflammation and distant organ injury in patients following severe injury. Enteric glia cells (EGCs) have been shown to play an important role in maintaining gut barrier integrity through secretion of S-Nitrosoglutathione (GSNO). We have recently shown than Vagal Nerve Stimulation (VNS) increases EGC activation, which was associated with improved gut barrier integrity. Thus, we sought to further study the mechanism by which EGCs prevent intestinal barrier breakdown utilizing an in vitro model. We postulated that EGCs, through the secretion of GSNO, would improve intestinal barrier function through improved expression and localization of intestinal tight junction proteins.

Methods

Epithelial cells were co-cultured with EGCs or incubated with GSNO and exposed to Cytomix (TNF-α, INF-γ, IL-1β) for 24 hours. Barrier function was assessed by permeability to 4kDa FITC-Dextran. Changes in tight junction proteins ZO-1, occludin, and phospho-MLC (P-MLC) were assessed by immunohistochemistry and immunoblot.

Key Results

Co-culture of Cytomix-stimulated epithelial monolayers with EGCs prevented increases in permeability and improved expression and localization of occludin, ZO-1, and P-MLC. Further, treatment of epithelial monolayers with GSNO also prevented Cytomix-induced increases in permeability and exhibited a similar improvement in expression and localization of occludin, ZO-1, and P-MLC.

Conclusions & Inferences

The addition of EGCs, or their secreted mediator GSNO, prevents epithelial barrier failure after injury and improved expression of tight junction proteins. Thus, therapies that increase EGC activation, such as VNS, may be a novel strategy to limit barrier failure in patients following severe injury.  相似文献   

2.

Background

Gastric cancer with undifferentiated histology has different clinicopathologic characteristics compared to differentiated type gastric cancer. We aimed to compare the risk of synchronous or metachronous tumors after curative resection of early gastric cancer (EGC) via endoscopic submucosal dissection (ESD), according to the histologic differentiation of the primary lesion.

Methods

Clinicopathological data of patients with initial-onset EGC curatively resected via ESD between January 2007 and November 2014 in a single institution were reviewed. We analyzed the incidence of synchronous or metachronous tumors after ESD with special reference to the differentiation status of the primary lesion.

Results

Of 1,560 patients with EGC who underwent curative resection via ESD, 1,447 had differentiated type cancers, and 113 had undifferentiated type cancers. The cumulative incidence of metachronous or synchronous tumor after ESD was higher in the differentiated cancer group than in the undifferentiated cancer group (P = 0.008). Incidence of metachronous or synchronous tumor was 4.8% and 1.2% per person-year in the differentiated and undifferentiated cancer groups, respectively. The Cox proportional hazard model revealed that undifferentiated cancers were associated with a low risk of synchronous or metachronous tumors after adjusting for confounding variables (hazard ratio [95% confidence interval] = 0.287 [0.090–0.918]).

Conclusions

The rate of synchronous or metachronous tumors after curative ESD was significantly lower for undifferentiated cancers compare to differentiated cancers. These findings suggest that ESD should be actively considered as a possible treatment for undifferentiated type EGCs.  相似文献   

3.

Background

Chronic rhinosinusitis is a multifactorial process disease in which bacterial infection or colonization may play an important role in the initiation or persistence of inflammatory response. The association between mucosal bacteria presence and inflammatory patterns has only been partially explored.

Objective

To demonstrate specific mucosal microorganisms possible association with inflammatory patterns.

Methods

We collected nasal polyps or sinus tissues from a clinical selection of six patient groups with defined sinus disease using tissue biomarkers. In the tissues, we detected bacteria using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH).

Results

After reviewing a total of 115 samples (15–20 samples per group), the mucosal presence of Staphylococcus aureus was correlated with IL-5 and SE-IgE positive chronic rhinosinusitis with nasal polyps and nasal polyps from cystic fibrosis patients. Chronic rhinosinusitis without nasal polyps with TNFα >20 pg/ml was associated with the mucosal presence of Pseudomonas aeruginosa.

Conclusion

This study identifies the relationship between intramucosal microbes and inflammatory patterns, suggesting that bacteria may affect the type of inflammation in chronic rhinosinusitis. Additional investigation is needed to further identify the nature of the relationship.  相似文献   

4.
A neuro-glia interaction is part of gut inflammation and essential for the integrity of the bowel. A loss of enteric glia cells (EGCs) led to a fatal haemorrhagic jejuno-ileitis and death in a few days. Although a diminished EGC network is postulated in inflammatory bowel disease and enteric glia pathology is described in Chagas' disease the role of EGCs in the onset of these disease complexes is not definitely clear. Several lines of evidence implicate that the secretion of different factors by enteric glia may be the key for modulating gut homeostasis. As mucosal integrity might be important for remission in Crohn's disease and inflammation of the enteric nervous system is part of the pathology in Chagas' disease, the role of EGCs during gut inflammation could be part of the key to understand these diseases.  相似文献   

5.

Purpose

Leukotrienes and prostaglandins, products of arachidonic acid metabolism, sustain both systemic and lesion-localized inflammation. Tumor-associated Inflammation can also contribute to the pathogenesis of colon cancer. Patients with inflammatory bowel disease (IBD) have increased risk of developing colon cancer. The levels of 5-lipoxygenase (5-LO), the key enzyme for leukotrienes production, are increased in colon cancer specimens and colonic dysplastic lesions. Here we report that Zileuton, a specific 5-LO inhibitor, can prevent polyp formation by efficiently reducing the tumor-associated and systemic inflammation in APCΔ468 mice.

Experimental Design

In the current study, we inhibited 5-LO by dietary administration of Zileuton in the APCΔ468 mouse model of polyposis and analyzed the effect of in vivo 5-LO inhibition on tumor-associated and systemic inflammation.

Results

Zileuton-fed mice developed fewer polyps and displayed marked reduction in systemic and polyp-associated inflammation. Pro-inflammatory cytokines and pro-inflammatory innate and adaptive immunity cells were reduced both in the lesions and systemically. As part of tumor-associated inflammation Leukotriene B4 (LTB4), product of 5-LO activity, is increased focally in human dysplastic lesions. The 5-LO enzymatic activity was reduced in the serum of Zileuton treated polyposis mice.

Conclusions

This study demonstrates that dietary administration of 5-LO specific inhibitor in the polyposis mouse model decreases polyp burden, and suggests that Zileuton may be a potential chemo-preventive agent in patients that are high-risk of developing colon cancer.  相似文献   

6.

Background

The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi).

Methods and Findings

In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model — scratched primary cultured astrocytes — Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi.

Conclusions

Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for increasing glial permissiveness and permitting axonal regeneration after central nervous system lesions.  相似文献   

7.

Objective

Obese and/or diabetic patients have elevated levels of free fatty acids and increased susceptibility to gastrointestinal symptoms. Since the enteric nervous system is pivotal in regulating gastrointestinal functions alterations or neuropathy in the enteric neurons are suspected to occur in these conditions. Lipid induced intestinal changes, in particular on enteric neurons, were investigated in vitro and in vivo using primary cell culture and a high fat diet (HFD) mouse model.

Design

Mice were fed normal or HFD for 6 months. Intestines were analyzed for neuronal numbers, remodeling and lipid accumulation. Co-cultures of myenteric neurons, glia and muscle cells from rat small intestine, were treated with palmitic acid (PA) (0 – 10−3 M) and / or oleic acid (OA) (0 – 10−3 M), with or without modulators of intracellular lipid metabolism. Analyses were by immunocyto- and histochemistry.

Results

HFD caused substantial loss of myenteric neurons, leaving submucous neurons unaffected, and intramuscular lipid accumulation in ileum and colon. PA exposure in vitro resulted in neuronal shrinkage, chromatin condensation and a significant and concentration-dependent decrease in neuronal survival; OA exposure was neuroprotective. Carnitine palmitoyltransferase 1 inhibition, L-carnitine- or alpha lipoic acid supplementation all counteracted PA-induced neuronal loss. PA or OA alone both caused a significant and concentration-dependent loss of muscle cells in vitro. Simultaneous exposure of PA and OA promoted survival of muscle cells and increased intramuscular lipid droplet accumulation. PA exposure transformed glia from a stellate to a rounded phenotype but had no effect on their survival.

Conclusions

HFD and PA exposure are detrimental to myenteric neurons. Present results indicate excessive palmitoylcarnitine formation and exhausted L-carnitine stores leading to energy depletion, attenuated acetylcholine synthesis and oxidative stress to be main mechanisms behind PA-induced neuronal loss.High PA exposure is suggested to be a factor in causing diabetic neuropathy and gastrointestinal dysregulation.  相似文献   

8.

Background

Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.

Objective

This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma.

Methods

Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro.

Results

The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro.

Conclusion

These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.  相似文献   

9.

Background & Aims

The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis.

Methods

At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs.

Results

MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome.

Conclusion

MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted independently to their anti-inflammatory effects.  相似文献   

10.

Objective

The microbiome has been implicated in the pathogenesis of a number of allergic and inflammatory diseases. The mucosa affected by eosinophilic esophagitis (EoE) is composed of a stratified squamous epithelia and contains intraepithelial eosinophils. To date, no studies have identified the esophageal microbiome in patients with EoE or the impact of treatment on these organisms. The aim of this study was to identify the esophageal microbiome in EoE and determine whether treatments change this profile. We hypothesized that clinically relevant alterations in bacterial populations are present in different forms of esophagitis.

Design

In this prospective study, secretions from the esophageal mucosa were collected from children and adults with EoE, Gastroesophageal Reflux Disease (GERD) and normal mucosa using the Esophageal String Test (EST). Bacterial load was determined using quantitative PCR. Bacterial communities, determined by 16S rRNA gene amplification and 454 pyrosequencing, were compared between health and disease.

Results

Samples from a total of 70 children and adult subjects were examined. Bacterial load was increased in both EoE and GERD relative to normal subjects. In subjects with EoE, load was increased regardless of treatment status or degree of mucosal eosinophilia compared with normal. Haemophilus was significantly increased in untreated EoE subjects as compared with normal subjects. Streptococcus was decreased in GERD subjects on proton pump inhibition as compared with normal subjects.

Conclusions

Diseases associated with mucosal eosinophilia are characterized by a different microbiome from that found in the normal mucosa. Microbiota may contribute to esophageal inflammation in EoE and GERD.  相似文献   

11.

Background

Trypanosomiasis induces a remarkable myenteric neuronal degeneration leading to megacolon. Very little is known about the risk for colon cancer in chagasic megacolon patients. To clarify whether chagasic megacolon impacts on colon carcinogenesis, we investigated the risk for colon cancer in Trypanosoma cruzi (T. cruzi) infected patients and rats.

Methods

Colon samples from T. cruzi-infected and uninfected patients and rats were histopathologically investigated with colon cancer biomarkers. An experimental model for chemical myenteric denervation was also performed to verify the myenteric neuronal effects on colon carcinogenesis. All experiments complied the guidelines and approval of ethical institutional review boards.

Results

No colon tumors were found in chagasic megacolon samples. A significant myenteric neuronal denervation was observed. Epithelial cell proliferation and hyperplasia were found increased in chagasic megacolon. Analyzing the argyrophilic nucleolar organiser regions within the cryptal bottom revealed reduced risk for colon cancer in Chagas’ megacolon patients. T. cruzi-infected rats showed a significant myenteric neuronal denervation and decreased numbers of colon preneoplastic lesions. In chemical myenteric denervated rats preneoplastic lesions were reduced from the 2nd wk onward, which ensued having the colon myenteric denervation significantly induced.

Conclusion/Significance

Our data suggest that the trypanosomiasis-related myenteric neuronal degeneration protects the colon tissue from carcinogenic events. Current findings highlight potential mechanisms in tropical diseases and cancer research.  相似文献   

12.
13.

Background

CD5+ B cells are a type of regulatory immune cells, though the involvement of this B cell subset in intestinal inflammation and immune regulation is not fully understood.

Methods

We examined the distribution of CD5+ B cells in various mouse organs. Expression levels of CD11b, IgM, and toll-like receptor (TLR)-4 and -9 in B cells were evaluated. In vitro, TLR-stimulated IL-10 production by colonic lamina propria (LP) CD5+ and CD5- B cells was measured. In vivo, mice with acute or chronic dextran sulfate sodium (DSS)-induced colonic injury were examined, and the frequency of colonic LP CD5+ B cells in those was assessed by flow cytometry.

Results

The expression level of TLR9 was higher in colonic LP CD5+ B cells as compared to CD5- B cells. Colonic LP CD5+ B cells produced greater amounts of IL-10 following stimulation with TLR ligands, especially TLR9, as compared with the LP CD5- B cells. Acute intestinal inflammation transiently decreased the frequency of colonic LP CD5+ B cells, while chronic inflammation induced a persistent decrease in colonic LP CD5+ B cells and led to a CD5- B cell-dominant condition.

Conclusion

A persistent altered mucosal B cell population caused by chronic gut inflammation may be involved in the pathogenesis of inflammatory bowel diseases.  相似文献   

14.

Purpose

Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP)-induced sepsis in mice.

Methods

C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation.

Results

Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05). Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis.

Conclusions

Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.  相似文献   

15.
Clostridium difficile infection (CDI) causes nosocomial/antibiotic-associated diarrhea and pseudomembranous colitis, with dramatic incidence/mortality worldwide. C. difficile virulence factors are toxin A and toxin B (TcdB) which cause cytopathic/cytotoxic effects and inflammation. Until now studies were focused on molecular effects of C. difficile toxins (Tcds) on different cells while unexplored aspect is the status/fate of cells that survived their cytotoxicity. Recently we demonstrated that enteric glial cells (EGCs) are susceptible to TcdB cytotoxicity, but several EGCs survived and were irreversibly cell-cycle arrested and metabolically active, suggesting that EGCs could became senescent. This is important because allowed us to evaluate the not explored status/fate of cells surviving Tcds cytotoxicity, and particularly if TcdB induces senescence in EGCs.Rat-transformed EGCs were treated with 10?ng/ml TcdB for 6?h–48?h, or for 48?h, followed by incubation for additional 4 or 11?days in absence of TcdB (6 or 13 total days). Senescence markers/effectors were examined by specific assays.TcdB induces senescence in EGCs, as demonstrated by the senescence markers: irreversible cell-cycle arrest, senescence-associated-β?galactosidase positivity, flat morphology, early and persistent DNA damage (ATM and H2AX phosphorylation), p27 overexpression, pRB hypophosphorylation, c?Myc, cyclin B1, cdc2 and phosphorylated-cdc2 downregulation, Sirtuin?2 and Sirtuin?3 overexpression. TcdB-induced EGC senescence is dependent by JNK and AKT activation but independent by ROS, p16 and p53/p21 pathways.In conclusion, TcdB induces senescence in EGCs. The extrapolation of these results to CDI leads to hypothesize that EGCs that survived TcdB, once they have acquired a senescence state, could cause irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and tumors due to persistent inflammation, transfer of senescence status and stimulation of pre-neoplastic cells.  相似文献   

16.

Background

Impaired intestinal barrier function, low-grade inflammation and altered neuronal control are reported in functional gastrointestinal disorders. However, the sequence of and causal relation between these events is unclear, necessitating a spontaneous animal model. The aim of this study was to describe the natural history of intestinal permeability, mucosal and neuromuscular inflammation and nitrergic motor neuron function during the lifetime of the BioBreeding (BB) rat.

Methods

Normoglycemic BB-diabetes prone (DP) and control rats were sacrificed at different ages and jejunum was harvested to characterize intestinal permeability, inflammation and neuromuscular function.

Results

Both structural and functional evidence of increased intestinal permeability was found in young BB-DP rats from the age of 50 days. In older animals, starting in the mucosa from 70 days and in half of the animals also in the muscularis propria from 110 days, an inflammatory reaction, characterized by an influx of polymorphonuclear cells and higher myeloperoxidase activity, was observed. Finally, in animals older than 110 days, coinciding with a myenteric ganglionitis, a loss of nitrergic neurons and motor function was demonstrated.

Conclusion

In the BB-rat, mucosal inflammatory cell infiltration is preceded by intestinal barrier dysfunction and followed by myenteric ganglionitis and loss of nitrergic function. This sequence supports a primary role for impaired barrier function and provides an insightful model for the pathogenesis of functional gastrointestinal disorders.  相似文献   

17.

Background

[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations.

Methods

Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared.

Results

Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (p<0.01), and in inflammations from different locations (p<0.005). However, SUVmax showed no statistical difference between in situ tumor and inflammation (p = 1.0) and among tumors from different locations (subcutaneous and in situ, p = 0.91). Values of Ki calculated from compartmental modeling showed significant difference between tumor and inflammation both subcutaneously (p<0.005) and orthotopically (p<0.01). Ki showed also location specific values for inflammations (subcutaneous, in situ and spontaneous, p<0.015). However, Ki of tumors from different locations (subcutaneous and in situ) showed no significant difference (p = 0.46).

Conclusion

In contrast to static PET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.  相似文献   

18.
19.

Background

Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology.

Objectives

The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls.

Method

Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained.

Results

The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences.

Conclusion

We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.  相似文献   

20.

Background

Cystic Echinococcosis(CE), caused by infection with the larval stage of the cestode Echinococcus granulosus (E. granulosus), is a chronic parasitic zoonosis, with highly susceptible infection in sheep. However, the comprehensive molecular mechanisms that underlie the process of E. granulosus infection in the early stage remain largely unknown. The objective of this present study was to gain a cluster of genes expression profiles in the intestine tissue of sheep infected with CE.

Methods

Nine healthy sheep were divided into infection group and healthy controls, with six infected perorally 5000 E. granulosus eggs suspended in 1000μl physiological saline and three controls perorally injected 1000μl physiological saline. All animals were sacrificed at 4 hours post-infection, respectively. The intestine tissue was removed and the RNA was extracted. In the infection group, the biology replicates were designed to make sure the accuracy of the data. The ovine microarrays were used to analyze changes of gene expression in the intestine tissue between CE infected sheep and healthy controls. Real-time PCR was used to assess reliability of the microarray data.

Results

By biology repeats, a total of 195 differentially expressed genes were identified between infected group and controls at 4 hours post-infection, with 105 genes related to immune responses, while 90 genes associated with functions including energy metabolism, fat soluble transport, etc. Among the 105 immunity genes, 72 genes showed up-regulated expression levels while 33 showed down-regulation levels. Function analysis showed that most of up-regulated genes were related to innate immune responses, such as mast cell, NK cell, cytokines, chemokines and complement. In addition, Real-time PCR analysis of a random selection of nine genes confirmed the reliability of the microarray data.

Conclusion

To our knowledge, this is the first report describing gene expression profiles in the intestine tissue of CE infection sheep. These results suggested that the innate immune system was activated to elicit immediate defense in the intestine tissue where E. granulosus invaded in at 4 hour-post infection. Furthermore, future interest will also focus on unraveling similar events, especially for the function of adaptive immunity, but at late stage infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号