首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have generated F9 murine embryonal carcinoma cells in which either the retinoid X receptor (RXR)α and retinoic acid receptor (RAR)α genes or the RXRα and RARγ genes are knocked out, and compared their phenotypes with those of wild-type (WT), RXRα−/−, RARα−/−, and RARγ−/− cells. RXRα−/−/ RARα−/− cells were resistant to retinoic acid treatment for the induction of primitive and parietal endodermal differentiation, as well as for antiproliferative and apoptotic responses, whereas they could differentiate into visceral endodermlike cells, as previously observed for RXRα−/− cells. In contrast, RXRα−/−/RARγ−/− cells were defective for all three types of differentiation, as well as antiproliferative and apoptotic responses, indicating that RXRα and RARγ represent an essential receptor pair for these responses. Taken together with results obtained by treatment of WT and mutant F9 cells with RAR isotype– and panRXR-selective retinoids, our observations support the conclusion that RXR/ RAR heterodimers are the functional units mediating the retinoid signal in vivo. Our results also indicate that the various heterodimers can exert both specific and redundant functions in differentiation, proliferation, and apoptosis. We also show that the functional redundancy exhibited between RXR isotypes and between RAR isotypes in cellular processes can be artifactually generated by gene knockouts. The present approach for multiple gene targeting should allow inactivation of any set of genes in a given cell.  相似文献   

2.
3.
All-trans retinoic acid (ATRA) has only limited single agent activity in AML without the PML-RARα fusion (non-M3 AML). In search of a sensitizing strategy to overcome this relative ATRA resistance, we investigated the potency of the HDAC class-I selective inhibitor entinostat in AML cell lines Kasumi-1 and HL-60 and primary AML blasts. Entinostat alone induced robust differentiation of both cell lines, which was enhanced by the combination with ATRA. This “priming” effect on ATRA-induced differentiation was at least equivalent to that achieved with the DNA hypomethylating agent decitabine, and could overall be recapitulated in primary AML blasts treated ex vivo. Moreover, entinostat treatment established the activating chromatin marks acH3, acH3K9, acH4 and H3K4me3 at the promoter of the RARβ2 gene, an essential mediator of retinoic acid (RA) signaling in different solid tumor models. Similarly, RARβ2 promoter hypermethylation (which in primary blasts from 90 AML/MDS patients was surprisingly infrequent) could be partially reversed by decitabine in the two cell lines. Re-induction of the epigenetically silenced RARβ2 gene was achieved only when entinostat or decitabine were given prior to ATRA treatment. Thus in this model, reactivation of RARβ2 was not necessarily required for the differentiation effect, and pharmacological RARβ2 promoter demethylation may be a bystander phenomenon rather than an essential prerequisite for the cellular effects of decitabine when combined with ATRA. In conclusion, as a “priming” agent for non-M3 AML blasts to the differentiation-inducing effects of ATRA, entinostat is at least as active as decitabine, and both act in part independently from RARβ2. Further investigation of this treatment combination in non-M3 AML patients is therefore warranted, independently of RARβ2 gene silencing by DNA methylation.  相似文献   

4.

Background

Epigenetic studies demonstrate that an association may exist between methylation of the retinoic acid receptor beta2 (RARβ2) gene promoter and breast cancer onset risk, tumor stage, and histological grade, however the results of these studies are not consistent. Hence, we performed this meta-analysis to ascertain a more comprehensive and accurate association.

Materials and Methods

Relevant studies were retrieved from the PubMed, Embase and Chinese National Knowledge Infrastructure databases up to February 28, 2015. After two independent reviewers screened the studies and extracted the necessary data, meta-analysis was performed using Review Manager 5.2 software.

Results

Nineteen eligible articles, including 20 studies, were included in our analysis. Compared to non-cancerous controls, the frequency of RARβ2 methylation was 7.27 times higher in patients with breast cancer (odds ratio (OR) = 7.27, 95% confidence interval (CI) = 3.01–17.52). Compared to late-stage RARβ2 methylated patients, the pooled OR of early-stage ones was 0.81 (OR = 0.81, 95% CI = 0.55–1.17). The OR of low-grade RARβ2 methylated patients was 0.96 (OR = 0.96, 95% CI = 0.74–1.25) compared to high-grade RARβ2 methylated patients.

Conclusion

RARβ2 methylation is significantly increased in breast cancer samples when compared to non-cancerous controls. RARβ2 could serve as a potential epigenetic marker for breast cancer detection and management.  相似文献   

5.
6.
7.
8.
9.
Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used topical application of selective agonists and antagonists for retinoic acid receptors (RARs) α and γ and retinoid-X receptors (RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RARγ and RXR. ATRA and the RARγ agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1) and the chemokines Ccl17 and Ccl22. In contrast, a RARα agonist strongly decreased the expression of ATRA-synthesis enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RARα and RARγ subtypes possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin. We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RARα and/or RARγ may promote skin-based inflammation and dysregulation of skin barrier properties.  相似文献   

10.
Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.  相似文献   

11.
Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in structure, epithelial mesenchymal markers and transforming growth factor-β1expression were differential between low and high transporter. Beneficial effects of ATRA were improved human peritoneal mesothelial cells morphology tending to normalize structures.  相似文献   

12.
13.
14.

Objectives

Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration.

Materials and Methods

We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points.

Results

All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7).

Conclusions

Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.  相似文献   

15.

Purpose

To study the role of long non-coding RNA (lncRNA) MALAT1 in transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells.

Methods

ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA) and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1) at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA). The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR) vitreous samples.

Results

The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.

Conclusion

LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.  相似文献   

16.
We previously showed that retinoic acid (RA) participates in the regulation of chondrocyte maturation during endochondral ossification, a process involving multiple developmental stages. To assess whether the responsiveness to RA treatment changes during chondrocyte maturation, immature chondrocytes were isolated from the caudal portion of Day 18-19 chick embryo sterna, a portion that remains cartilaginous through early postnatal life but ossifies with age. The immature cells were allowed to reach different stages of maturation by growth for different time in culture. Progression by the cells toward the mature phenotype during culture was confirmed by increases in average cell diameter, proteoglycan synthesis, and alkaline phosphatase (APase) activity. When developmentally immature passage 0 (PO) cultures were treated with RA (10-100 nM) for 72 h, the cells readily became fibroblastic, reduced drastically their proteoglycan synthesis, and failed to activate type X collagen gene expression. When older cultures (P1 and P2) were treated with RA, the cells acquired a characteristic epithelioid shape and increased their APase activity. Moreover, 5-10% of P1 cells and 20-25% of P2 cells activated type X collagen synthesis in response to RA. RA treatment markedly induced expression of the gene encoding the β isoform of retinoic acid receptor (RARβ) and also provoked a moderate 2.5-fold increase in RARα gene expression. A similar change in responsiveness to RA was observed during maturation in vivo. Chondrocytes were isolated from the cephalic portion of Day 10, 11, 13, and 16 chick embryo sterna, and were treated with different doses of RA (10-100 nM) for 72 h. The cells from the Day 10 sternum failed to activate type X collagen gene expression in response to RA. In contrast, with increasing age of the embryos, an increasing fraction of cells induced type X collagen gene expression in response to RA. We conclude that responsiveness to RA changes during the early stages of chondrocyte maturation and that maturation depends on interactions between exogenous retinoids and the endogenous developmental program of chondrocytes.  相似文献   

17.
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca2+]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca2+]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9415-6) contains supplementary material, which is available to authorized users.  相似文献   

18.

Purpose

Nitric oxide (NO) is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3). We have shown that NO protects against myocardial ischemia/reperfusion (I/R) injury and that depletion of circulating NOS3 increases within 24h of ischemia/reperfusion the size of myocardial infarction (MI) in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI.

Methods

To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3−/− and wild type (WT) mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC−/EC+) or in both, blood cells and vascular endothelium (BC+/EC+). Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24h, 4d, 1w, 2w and 3w) by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM) modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori’s One-step trichrome staining.

Results

Three weeks post MI, LV end-systolic (53.2±5.9μl;***p≤0.001;n = 5) and end-diastolic volumes (82.7±5.6μl;*p<0.05;n = 5) were significantly increased in BC−/EC+, along with decreased LV developed pressure (67.5±1.8mmHg;n = 18;***p≤0.001) and increased scar size/left ventricle (19.5±1.5%;n = 13;**p≤0.01) compared to BC+/EC+ (ESV:35.6±2.2μl; EDV:69.1±2.6μl n = 8; LVDP:83.2±3.2mmHg;n = 24;scar size/LV13.8±0.7%;n = 16). Myocardial scar of BC−/EC+ was characterized by increased total collagen content (20.2±0.8%;n = 13;***p≤0.001) compared to BC+/EC+ (15.9±0.5;n = 16), and increased collagen type I and III subtypes.

Conclusion

Circulating NOS3 ameliorates maladaptive left ventricular remodeling following reperfused myocardial infarction.  相似文献   

19.
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.  相似文献   

20.

Objectivs

Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts.

Methods

Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit.

Results

Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells).

Conclusions

TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号