首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlamydomonas has two actin genes, one coding for a conventional actin and the other coding for a highly divergent actin. The divergent actin NAP (for “novel actin-like protein”) is expressed only negligibly in wild-type cells but abundantly in a null mutant of conventional actin, the ida5 mutant. The presence of the dormant NAP gene suggests that NAP may also have its own function in wild-type cells under some conditions. However, no specific functions have been suggested. In this study, we examined the expression of actin and NAP in wild-type and ida5 cells under conditions where actin function has been shown to be important. We found that deflagellation induces the expression of NAP as well as that of actin in wild-type cells. The expressed NAP becomes localized to the regrown flagella, apparently without being associated with dynein. Mating of gametes also increased the expression of actin in wild-type cells and that of NAP in ida5 cells, resulting in accumulation of these proteins in flagella (in both wild-type and ida5 cells) and the fertilization tubule (only in wild-type cells). However, it did not induce significant NAP expression in wild-type cells. These and other observations suggest that the expression of actin and NAP mRNAs is controlled by two discrete mechanisms and that NAP plays a role in flagellar formation in wild-type cells.  相似文献   

2.
Chlamydomonas flagellar inner-arm dynein consists of seven subspecies (a–g), of which all but f contain actin as subunits. The mutant ida5 and a new strain, ida5-t, lack four subspecies (a, c, d, and e). These mutants were found to have mutations in the conventional actin gene, such that its product is totally lost; ida5 has a single-base deletion that results in a stop codon at a position about two-thirds from the 5′ end of the coding region, and ida5-t lacks a large portion of the entire actin gene. Two-dimensional gel electrophoresis patterns of the axonemes and inner-arm subspecies b and g of ida5 lacked the spot of actin (isoelectric point [pI] = ~5.3) but had two novel spots with pIs of ~5.6 and ~5.7 instead. Western blot with different kinds of anti-actin antibodies suggested that the proteins responsible for the two novel spots and conventional actin are different but share some antigenicity. Since Chlamydomonas has been shown to have only a single copy of the conventional actin gene, it is likely that the novel spots in ida5 and ida5-t originated from another gene(s) that codes for a novel actin-like protein(s) (NAP), which has hitherto been undetected in wildtype cells. These mutants retain the two inner-arm subspecies b and g, in addition to f, possibly because NAP can functionally substitute for the actin in these subspecies while they cannot in other subspecies. The net growth rate of ida5 and ida5-t cells did not differ from that of wild type, but the mating efficiency was greatly reduced. This defect was apparently caused by deficient growth of the fertilization tubule. These results suggest that NAP can carry out some, but not all, functions performed by conventional actin in the cytoplasm and raise the possibility that Chlamydomonas can live without ordinary actin.  相似文献   

3.
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell–cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at ‘tricellular junctions’—specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.  相似文献   

4.
Drebrin is a filament-binding protein involved in organizing the dendritic pool of actin. Previous in vivo studies identified the actin-binding domain of drebrin (DrABD), which causes the same rearrangements in the cytoskeleton as the full-length protein. Site-directed mutagenesis, electron microscopic reconstruction, and chemical cross-linking combined with mass spectrometry analysis were employed here to map the DrABD binding interface on actin filaments. DrABD could be simultaneously attached to two adjacent actin protomers using the combination of 2-iminothiolane (Traut's reagent) and MTS1 [1,1-methanediyl bis(methanethiosulfonate)]. Site-directed mutagenesis combined with chemical cross-linking revealed that residue 238 of DrABD is located within 5.4 Å from C374 of actin protomer 1 and that native cysteine 308 of drebrin is near C374 of actin protomer 2. Mass spectrometry analysis revealed that a zero-length cross-linker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, can link the N-terminal G-S extension of the recombinant DrABD to E99 and/or E100 on actin. Efficient cross-linking of drebrin residues 238, 248, 252, 270, and 271 to actin residue 51 was achieved with reagents of different lengths (5.4-19 Å). These results suggest that the “core” DrABD is centered on actin subdomain 2 and may adopt a folded conformation upon binding to F-actin. The results of electron microscopic reconstruction, which are in a good agreement with the cross-linking data, revealed polymorphism in DrABD binding to F-actin and suggested the existence of two binding sites. These results provide new structural insight into the previously observed competition between drebrin and several other F-actin-binding proteins.  相似文献   

5.
Filamin A (FLNa) is an actin-binding protein that cross-links F-actin into networks of orthogonally branched filaments. FLNa also directs the networks to integrins while responding to mechanochemical signaling pathways. Flexible, 160-nm-long FLNa molecules are tail-to-tail dimers, each subunit of which contains an N-terminal calponin homology (CH)/actin-binding domain connected by a series of 24 immunoglobulin (Ig) repeats to a dimerization site at their C-terminal end. Whereas the contribution of the CH domains to F-actin affinity is weak (apparent Ka ~ 105), the binding of the intact protein to F-actin is strong (apparent Ka ~ 108), suggesting involvement of additional parts of the molecule in this association. Indeed, previous results indicate that Ig repeats along FLNa contribute significantly to the strength of the actin filament interaction. In the current study, we used electron microscopy and three-dimensional reconstruction to elucidate the structural basis of the Ig repeat–F-actin binding. We find that FLNa density is clearly delineated in reconstructions of F-actin complexed either with a four-Ig-repeat segment of FLNa containing Ig repeat 10 or with immunoglobulin-like filamin A repeat (IgFLNa)10 alone. The mass attributable to IgFLNa10 lies peripherally along the actin helix over the N-terminus of actin subdomain 1. The IgFLNa10 interaction appears to be specific, since no other individual Ig repeat or fragment of the FLNa molecule examined, besides ones with IgFLNa10 or CH domains, decorated F-actin filaments or were detected in reconstructions. We conclude that the combined interactions of CH domains and the IgFLNa10 repeat provide the binding strength of the whole FLNa molecule and propose a model for the association of IgFLNa10 on actin filaments.  相似文献   

6.
The flowering plant pollen tube is the fastest elongating plant cell and transports the sperm cells for double fertilization. The highly dynamic formation and reorganization of the actin cytoskeleton is essential for pollen germination and pollen tube growth. To drive pollen-specific expression of fluorescent marker proteins, commonly the strong Lat52 promoter is used. Here we show by quantitative fluorescent analysis that the gametophyte-specific ARO1 promoter from Arabidopsis drives an about 3.5 times weaker transgene expression than the Lat52 promoter. In one third of the pollen of F-actin-labeled ARO1p:tagRFP-T-Lifeact transgenic lines we observed mobile ring-shaped actin structures in pollen grains and pollen tubes. Pollen tube growth, transgene transmission and seed production were not affected by tagRFP-T-Lifeact expression. F-actin rings were able to integrate into emerging actin filaments and they may reflect a particular physiological state of the pollen or a readily available storage form provided for rapid actin network remodeling.  相似文献   

7.
Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5–12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.  相似文献   

8.
Although actin filaments can form by oligomer annealing in vitro, they are assumed to assemble exclusively from actin monomers in vivo. In this study, we show that a pool of actin resistant to the monomer-sequestering drug latrunculin A (lat A) contributes to filament assembly in vivo. Furthermore, we show that the cofilin accessory protein Aip1 is important for establishment of normal actin monomer concentration in cells and efficiently converts cofilin-generated actin filament disassembly products into monomers and short oligomers in vitro. Additionally, in aip1Δ mutant cells, lat A–insensitive actin assembly is significantly enhanced. We conclude that actin oligomer annealing is a physiologically relevant actin filament assembly pathway in vivo and identify Aip1 as a crucial factor for shifting the distribution of short actin oligomers toward monomers during disassembly.  相似文献   

9.
Chlamydomonas has two actin genes: one encoding a conventional actin (90% amino acid identity with mammalian actin) and the other a highly divergent actin (NAP; 64% identity). The expression of the two genes is regulated in a mutually exclusive manner. Thus, ida5, a mutant that lacks the conventional actin (CrA) gene, expresses NAP abundantly, whereas wild-type cells express NAP only negligibly under normal conditions. To explore the physiological significance of the two actins, chimeric genes with the 5' upstream region of one gene replaced by that of the other were constructed and used to transform ida5. The transformant (TF5) with a chimeric clone comprising the 5'-untranslated region from the NAP gene and the CrA-encoding sequence recovered the dyneins missing in ida5 and showed almost normal motility. After deflagellation of this transformant, however, only about 30% of cells grew flagella, unlike wild-type cells, >80% of which displayed reflagellation. Transformant TF10, which contains the CrA upstream region and NAP coding region, underwent reflagellation normally, as did the parent strain, ida5. In TF5, the mRNA level of both CrA and NAP was increased greatly during reflagellation. In light of the recent finding that NAP mRNA is expressed transiently upon reflagellation in wild-type cells, the described results suggest that 1) the expression of NAP mRNA is indispensable for flagellation and 2) robust expression of CrA may inhibit proper flagellation by interfering with the function of NAP in the early stages of reflagellation.  相似文献   

10.
Stable intercellular adhesions formed through the cadherin-catenin complex are important determinants of proper tissue architecture and help maintain tissue integrity during morphogenetic movements in developing embryos. A key regulator of this stability is α-catenin, which connects the cadherin-catenin complex to the actin cytoskeleton. Although the C-terminal F-actin-binding domain of α-catenin has been shown to be crucial for its function, a more detailed in vivo analysis of discrete regions and residues required for actin binding has not been performed. Using Caenorhabditis elegans as a model system, we have characterized mutations in hmp-1/α-catenin that identify HMP-1 residues 687–742 and 826–927, as well as amino acid 802, as critical to the localization of junctional proximal actin during epidermal morphogenesis. We also find that the S823F transition in a hypomorphic allele, hmp-1(fe4), decreases actin binding in vitro. Using hmp-1(fe4) animals in a mutagenesis screen, we were then able to identify 11 intragenic suppressors of hmp-1(fe4) that revert actin binding to wild-type levels. Using homology modeling, we show that these amino acids are positioned at key conserved sites within predicted α-helices in the C terminus. Through the use of transgenic animals, we also demonstrate that HMP-1 residues 315–494, which correspond to a putative mechanotransduction domain that binds vinculin in vertebrate αE-catenin, are not required during epidermal morphogenesis but may aid efficient recruitment of HMP-1 to the junction. Our studies are the first to identify key conserved amino acids in the C terminus of α-catenin that modulate F-actin binding in living embryos of a simple metazoan.  相似文献   

11.
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin–MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170–F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170–F-actin and CLIP-170–MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170–F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.  相似文献   

12.
Coronins are F-actin-binding proteins that are involved, in concert with Arp2/3, Aip1, and ADF/cofilin, in rearrangements of the actin cytoskeleton. An understanding of coronin function has been hampered by the absence of any structural data on its interaction with actin. Using electron microscopy and three-dimensional reconstruction, we show that coronin-1A binds to three protomers in F-actin simultaneously: it bridges subdomain 1 and subdomain 2 of two adjacent actin subunits along the same long-pitch strand, and it staples subdomain 1 and subdomain 4 of two actin protomers on different strands. Such a mode of binding explains how coronin can stabilize actin filaments in vitro. In addition, we show which residues of F-actin may participate in the interaction with coronin-1A. Human nebulin and Xin, as well as Salmonella invasion protein A, use a similar mechanism to stabilize actin filaments. We suggest that the stapling of subdomain 1 and subdomain 4 of two actin protomers on different strands is a common mechanism for F-actin stabilization utilized by many actin-binding proteins that have no homology.  相似文献   

13.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

14.
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.  相似文献   

15.
Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (~75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled.  相似文献   

16.
Novel actin-like protein (NAP) is a highly divergent actin expressed in Chlamydomonas. With its low sequence similarity, it is uncertain whether NAP can polymerize into filaments. Here I assessed it by ectopically expressing enhanced green fluorescent protein-tagged NAP (EGFP-NAP) in cultured cells. EGFP-NAP was excluded from stress fibres but partially co-localized with endogenous actin in the cell periphery. In fluorescence recovery after photobleaching experiment, turnover rate of EGFP-NAP was similar to the estimated diffusion rate of monomeric actin. Therefore, EGFP-NAP likely accumulates by diffusion. These findings suggest that NAP has extremely poor ability to polymerize.  相似文献   

17.
Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties.  相似文献   

18.
Actin plays a role in various processes in eukaryotic cells, including cell growth and death. We investigated whether the antitumor effect of trichostatin A (TSA) is associated with the dynamic rearrangement of F-actin. TSA is an antitumor drug that induces hyper-acetylation of histones by inhibiting histone deacetylase. HeLa human cervical cancer cells were used to measure the antitumor effect of TSA. The percent cell survival was determined by an MTT assay. Hypodiploid cell formation was assessed by flow cytometry. Collapse of the mitochondrial membrane potential (MMP) was identified by a decrease in the percentage of cells with red MitoProbe J-aggregate (JC-1) fluorescence. Cell survival was reduced by treatment with TSA, as judged by an MTT assay and staining with propidium iodide, FITC-labeled annexin V, or 4′,6-diamidino-2-phenylindole (DAPI). TSA also induced an MMP collapse, as judged by the measurement of intracellular red JC-1 fluorescence. In addition, the F-actin depolymerizers cytochalasin D (CytoD) and latrunculin B (LatB) induced an MMP collapse and increased apoptotic cell death in HeLa cells. However, our data show that apoptotic cell death and the MMP collapse induced by TSA were decreased by the co-treatment of cells with CytoD and LatB. These findings demonstrate that the dynamic rearrangement of F-actin might be necessary for TSA-induced HeLa cell apoptosis involving a TSA-induced MMP collapse. They also suggest that actin cytoskeleton dynamics play an important role in maintaining the therapeutic effects of antitumor agents in tumor cells. They further suggest that maintaining the MMP could be a novel strategy for increasing drug sensitivity in TSA-treated tumors.  相似文献   

19.
G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2 strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCARcells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.  相似文献   

20.
α-Actinin is an essential actin cross-linker involved in cytoskeletal organization and dynamics. The molecular conformation of α-actinin’s actin-binding domain (ABD) regulates its association with actin and thus mutations in this domain can lead to severe pathogenic conditions. A point mutation at lysine 255 in human α-actinin-4 to glutamate increases the binding affinity resulting in stiffer cytoskeletal structures. The role of different ABD conformations and the effect of K255E mutation on ABD conformations remain elusive. To evaluate the impact of K255E mutation on ABD binding to actin we use all-atom molecular dynamics and free energy calculation methods and study the molecular mechanism of actin association in both wild-type α-actinin and in the K225E mutant. Our models illustrate that the strength of actin association is indeed sensitive to the ABD conformation, predict the effect of K255E mutation—based on simulations with the K237E mutant chicken α-actinin—and evaluate the mechanism of α-actinin binding to actin. Furthermore, our simulations showed that the calmodulin domain binding to the linker region was important for regulating the distance between actin and ABD. Our results provide valuable insights into the molecular details of this critical cellular phenomenon and further contribute to an understanding of cytoskeletal dynamics in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号