首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A number of eukaryotic surface glycoproteins, including the variant surface glycoproteins of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosyl-phosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated precursor glycolipid that can be transferred en bloc to the polypeptide. We have reported the purification and partial characterization of a candidate precursor glycolipid (P2) and of a compositionally similar glycolipid (P3) from T. brucei (Menon, A. K., Mayor, S., Ferguson, M. A. J., Duszenko, M., and Cross, G. A. M. (1988) J. Biol. Chem. 263, 1970-1977). The primary structure of the glycan portions of P2 and P3 have now been analyzed by a combination of selective chemical fragmentation and enzymatic glycan sequencing at the subnanomolar level. The glycans were generated by deamination, NaB3H4 reduction, and dephosphorylation of glycolipids purified from different trypanosome variants. Glycan fragments derived from biosynthetically labeled glycolipids were also analyzed. The cumulative data strongly suggest that P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The structural similarities suggest that GPI membrane anchors are derived from common precursor glycolipids that become variably modified during or after addition to newly synthesized proteins.  相似文献   

2.
Trypanosoma brucei variant surface glycoproteins are apparently synthesized with a hydrophobic carboxyl-terminal peptide that is cleaved and replaced by a complex glycosylphosphatidylinositol membrane anchor within 1 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated core glycolipid that would be transferred en bloc to the variant surface glycoprotein polypeptide. We report the purification and chemical characterization of a glycolipid from T. brucei that has properties consistent with a role as a variant surface glycoprotein glycolipid donor. This candidate glycolipid precursor has been defined by thin-layer chromatography of extracts of trypanosomes metabolically labeled with radioactive myristic acid, ethanolamine, glucosamine, mannose, and phosphate and by enzymatic, chemical, and gas chromatographic-mass spectrometric analysis. Mild alkali released 100% of the myristic acid, and reaction with phospholipase A2 released 50%. Nitrous acid deamination generated dimyristylphosphatidylinositol, and periodate oxidation released phosphatidic acid. Treatment of purified glycolipid with phosphatidylinositol-specific phospholipase C released dimyristylglycerol and a water-soluble glycan that was sized on Bio-Gel P-4 columns. The candidate precursor contained mannose, myristic acid, phosphate, and ethanolamine with an unsubstituted amino group, but not galactose.  相似文献   

3.
The variant surface glycoproteins (VSGs) of Trypanosoma brucei are synthesized with a hydrophobic COOH-terminal peptide that is cleaved and replaced by a glycophospholipid, which anchors VSG to the surface membrane. The kinetics of VSG processing were studied by metabolic labeling with [35S]methionine and [3H]myristic acid. The COOH-terminal oligosaccharide-containing structure remaining after phospholipase removal of dimyristyl glycerol from membrane-form VSG could be detected serologically within 1 min of polypeptide synthesis in two T. brucei variants studied. Addition of the oligosaccharide-containing structure was resistant to tunicamycin. VSGs synthesized in the presence of tunicamycin displayed lower apparent molecular weights, consistent with the complete inhibition of N-glycosylation at one (variant 117), two (variant 221), or at least three (variant 118) internal asparagine sites. In most experiments, N-glycosylation appeared to occur during or immediately after polypeptide synthesis but in a few cases N-glycosylation was delayed or incomplete. In all cases, addition of the COOH-terminal oligosaccharide-containing structure occurred normally. In dual-labeling studies, cycloheximide caused rapid inhibition of both [35S]methionine and [3H]myristic acid incorporation, suggesting that myristic acid addition also occurs immediately after polypeptide synthesis. Our data suggest that the complex ethanolamine-glycosyl-dimyristylphosphatidylinositol structure of membrane-form VSG is added en bloc within 1 min of completion of the polypeptide.  相似文献   

4.
Trypanosome variant surface glycoproteins exemplify a class of eukaryotic cell surface glycoproteins that rely on a carboxyl-terminal covalently-attached inositol-containing glycophospholipid for membrane attachment. The glycolipid anchor is acquired soon after translation of the polypeptide, apparently by replacement of a short carboxyl-terminal peptide sequence with a prefabricated glycolipid. A candidate glycolipid precursor (referred to as P2), and a related glycolipid (P3) have been identified recently in polar lipid extracts from trypanosomes. In this paper we describe the synthesis of P2 and P3 by trypanosome membranes. Analyses of organic solvent extracts from membranes incubated with radioactive sugar nucleotides (GDP-[3H]mannose or UDP-[3H]GlcNAc) showed a spectrum of labelled lipids, ranging from partially glycosylated species to the final products, P2 and P3. Structural analyses of these putative biosynthetic intermediates suggest that glycolipid assembly occurs via the sequential glycosylation of phosphatidylinositol.  相似文献   

5.
6.
Two conformationally distinct regions were revealed by tryptic cleavage of six undenatured variant surface glycoproteins purified from clones of Trypanosoma brucei. Within 5 min, the native glycoproteins (65,000 mol.wt.) were cleaved, yielding a large N-terminal fragment (48,000-55,000 mol.wt. depending on the variant) together with one or more C-terminal fragments. After 30-60 min incubation, further breakdown of the large fragment occurred in some variants. The ultimate large product (40,000-52,000 mol.wt.) was very resistant to further degradation by trypsin (in the absence of denaturation). The distinction between N-terminal and C-terminal domains may be significant in relation to the organization and function of these glycoproteins on the trypanosome surface.  相似文献   

7.
The average solution conformation of the glycosylphosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein (VSG) has been determined by using a combination of two-dimensional 1H-1H NMR methods together with molecular orbital calculations and restrained molecular dynamics simulations. This allows the generation of a model to describe the orientation of the glycan with respect to the membrane. This shows that the glycan exists in an extended configuration along the plane of the membrane and spans an area of 600 A2, which is similar to the cross-sectional area of a monomeric N-terminal VSG domain. Taken together, these observations suggest a possible space-filling role for the GPI anchor that may maintain the integrity of the VSG coat. The potential importance of the GPI glycan as a chemotherapeutic target is discussed in light of these observations.  相似文献   

8.
In our isolation procedure, the surface antigens of the variants AnTat 1.1 and 1.10 (Trypanosoma brucei brucei) are essentially obtained as a disulfide-linked dimer while the AnTat 1.8 surface antigen is found as a mixture of monomer and disulfide-linked dimer. This observation may be related to the localization of the cysteine residues in the protein sequences. In the purification procedure using concanavalin-A Sepharose chromatography, besides the VSG elution by methyl-alpha-D-mannopyranoside, a quantitative elution of still bound VSG may be obtained by the addition of beta-mercaptoethanol to methyl-alpha-D-mannopyrannoside in the elution buffer. The surface antigen of the variant AnTat 1.1 was examined for molecular form at several different times during the release procedure. The disulfide-linked dimer could be observed within 30 min of the surface coat release, indicating its presence within the parasite.  相似文献   

9.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

10.
11.
12.

Background

The current antibody detection tests for the diagnosis of gambiense human African trypanosomiasis (HAT) are based on native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. These native VSGs are difficult to produce, and contain non-specific epitopes that may cause cross-reactions. We aimed to identify mimotopic peptides for epitopes of T.b. gambiense VSGs that, when produced synthetically, can replace the native proteins in antibody detection tests.

Methodology/Principal Findings

PhD.-12 and PhD.-C7C phage display peptide libraries were screened with mouse monoclonal antibodies against the predominant VSGs LiTat 1.3 and LiTat 1.5 of T.b. gambiense. Thirty seven different peptide sequences corresponding to a linear LiTat 1.5 VSG epitope and 17 sequences corresponding to a discontinuous LiTat 1.3 VSG epitope were identified. Seventeen of 22 synthetic peptides inhibited the binding of their homologous monoclonal to VSG LiTat 1.5 or LiTat 1.3. Binding of these monoclonal antibodies to respectively six and three synthetic mimotopic peptides of LiTat 1.5 and LiTat 1.3 was significantly inhibited by HAT sera (p<0.05).

Conclusions/Significance

We successfully identified peptides that mimic epitopes on the native trypanosomal VSGs LiTat 1.5 and LiTat 1.3. These mimotopes might have potential for the diagnosis of human African trypanosomiasis but require further evaluation and testing with a large panel of HAT positive and negative sera.  相似文献   

13.
Variant surface glycoproteins (VSG) of Trypanosoma brucei are released in a water soluble form on impairment of membrane integrity. We have previously shown that this release is the result of an enzyme-mediated event which converts the hydrophobic membrane form VSG into the hydrophilic water-soluble form. We now present further details of the methods by which membrane form VSG ( mfVSG ) may be isolated, uncontaminated by water-soluble VSG ( sVSG ). The sensitivity to different metal ions of the enzyme that mediated the conversion event is discussed, and some biochemical characteristics of different mfVSG preparations are presented.  相似文献   

14.
The complete primary structures of the Asn-linked oligosaccharides from the conserved glycosylation site of the type-I variant surface glycoproteins of Trypanosoma brucei MITat 1.4 and MITat 1.6 were determined using a combination of exoglycosidase digestions, permethylation analysis, acetolysis and 1H NMR. Both variants contained almost exclusively oligomannose-type oligosaccharides, identical in structure to those of mammalian glycoproteins. The oligosaccharides ranged in size from (Man)9(GlcNAc)2 to (Man)5(GlcNAc)2. The relative abundance of each component was similar in both variants. The major components were (Man)8(GlcNAc)2 and (Man)7(GlcNAc)2 with slightly less (Man)9(GlcNAc)2 and (Man)6(GlcNAc)2 and much less (Man)5(GlcNAc)2. Both variants also contained the same structural isomers. The close similarity of the oligomannose series indicates identical processing at the conserved site in both variants.  相似文献   

15.
Secondary structure determinations have been carried out on two antigenically related variant surface glycoproteins (VSG's) from Trypanosoma brucei, WaTat 1.1 and WaTat 1.12. The two molecules, which bear highly homologous amino-terminal sequences, showed subtle differences in their circular dichroism (CD). Computer analysis revealed that the contribution of alpha helix to the secondary structure of the VSG's was 49% for WaTat 1.1 and 52% for WaTat 1.12. Unfolding studies using guanidine hydrochloride suggested that the WaTat 1.12 VSG was slightly more resistant than WaTat 1.1 VSG to the effect of this reagent. The membrane form of WaTat 1.1 VSG purified by reverse-phase high-performance liquid chromatography gave CD and fluorescence spectra indicative of a partially unfolded or denatured molecule. It was also shown that the antigenic differences between the VSG's were due to surface-oriented topographically assembled epitopes which were highly sensitive to structural perturbations. Monoclonal antibodies specific for these epitopes bound to four discreet determinants on WaTat 1.1, one of which was absent from WaTat 1.12.  相似文献   

16.
The complete primary structures of the major Asn-linked oligosaccharides from the type II variant surface glycoproteins (VSGs), MITat 1.2 and MITat 1.7, and the type III VSG, MITat 1.5, were determined using a combination of exo- and endoglycosidase digestions, methylation analysis, acetolysis, and 500 MHz 1H NMR spectroscopy. Each variant contained classical branched oligomannose-type and biantennary complex oligosaccharides, a proportion of the latter substituted with terminal alpha(1-3)-linked galactose residues, the first report of the presence of this epitope in Trypanosoma brucei. In addition both the type II variants contained relatively large amounts of the unusual small oligomannose-type oligosaccharides, Man4GlcNAc2 and Man3GlcNAc2, and a diverse array of novel branched poly-N-acetyllactosamine oligosaccharides, similar but not identical to those from mammalian glycoproteins. These latter structures were also partially substituted with terminal alpha(1-3)-linked galactose residues. Glycosylation in the type II variants showed site specificity in that the poly-N-acetyllactosamine and Man(9-5)GlcNAc2 oligosaccharides were located exclusively at Asn-glycosylation site 1 very close to the C terminus, whereas the Man(4-3)GlcNAc2 and biantennary complex oligosaccharides were located exclusively at site 2. This is the first report of the presence of poly-N-acetyllactosamine oligosaccharides in protozoa.  相似文献   

17.
Crystals were produced from variant surface glycoproteins (VSG) of Trypanosoma brucei brucei antigenic variants MITat 1.2, 1.6, and ILTat 1.22, 1.23, 1.24, 1.25, and 1.26. Purified VSGs had molecular weights from 60,000 to 68,000 on sodium dodecyl sulfate-polyacrylamide gels, whereas the crystals obtained were composed of polypeptides of approximate Mr 40,000-50,000. Amino-terminal amino acid sequences determined from the crystallized VSGs were identical to sequences obtained from the respective intact proteins, indicating that the crystals contained VSG amino-terminal fragments. Crystallization conditions and lattice dimensions of the crystals are given.  相似文献   

18.
The surface coat of Trypanosoma brucei is composed of 10(7) molecules of the variant surface glycoprotein (VSG). Each VSG molecule is tethered to the cell membrane by a glycolipid moiety which contains 1,2-dimyristoyl-sn-phosphatidylinositol (Ferguson, M. A. J., Low, M. G., and Cross, G. A. M. (1985) J. Biol. Chem. 260, 14547-14555). Following cell lysis, an endogenous phospholipase C cleaves dimyristoyl glycerol from the glycolipid, releasing soluble VSG. We have purified this enzyme, which we designate VSG lipase, by detergent extraction, (NH4)2SO4 fractionation, hydrophobic chromatography, and cation exchange chromatography. It is purified 2600-fold and is virtually homogeneous. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the apparent molecular mass is 37 kDa. In solutions containing the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), the Stokes radius (2.6 nm), S20,w (3.7 S), and v (0.77 cm3/g) of VSG lipase suggest a molecular mass for the native enzyme of about 47 kDa, part of which may be due to bound CHAPS. Therefore, it is probably monomeric. VSG lipase does not require Ca2+; it is stimulated by chelating agents or dithiothreitol, and it is inhibited by some sulfhydryl reagents. The purified enzyme appears to be highly specific. Under the conditions of our assay, it cleaves the VSG glycolipid, a biosynthetic precursor of the VSG glycolipid, and, to a much lesser extent, 1,2-dimyristoyl-sn-phosphatidylinositol. There was no apparent cleavage of other myristate-containing lipids of trypanosomes or 1-stearoyl-2-arachidonoyl-sn-phosphatidylinositol.  相似文献   

19.
The glycosylphosphatidylinositol anchor (GPI) from the membrane form variant surface glycoprotein (mfVSG) of Trypanosoma brucei brucei was isolated and identified after radioactive labeling with [3H]myristic acid, by immunostaining on HPTLC with a polyclonal antibody directed against mfVSG and by negative ion laser desorption and fast atom bombardment mass spectrometry of the GPI anchor before and after peracetylation. For the production of monoclonal antibodies the purified GPI molecule was incorporated into liposomes and injected intrasplenically in BALB/c mice. After fusion with the myeloma cell line X63-Ag 8.653 hybridoma cells were cloned by single cell cloning. The secreted antibodies were characterized by ELISA, Ouchterlony immunodiffusion, and Western blot and used in first immunofluorescent studies.  相似文献   

20.
The cross-reacting determinant (CRD epitope) of the glycosyl-phosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein has been analysed by selective chemical and enzymic modification of the isolated GPI structure combined with the use of a competitive ELISA inhibition assay for the detection of CRD epitopes. The data show that the CRD consists of at least three overlapping epitopes involving different regions of the molecule including the inositol 1,2-cyclic phosphate, the non-N-acetylated-glucosamine residue and the galactose branch. Although the presence of all three of these structural features is required for quantitative binding of anti-CRD antibodies in ELISA and Western blotting, the Western blot reaction obtained in the presence of any one epitope is still significant. The use of anti-CRD antibodies for the detection of GPI anchors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号