首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first identification of the cholinesterase variant E1kE1f is reported from a family study. The evidence is based on the determination of enzymic activity, dibucaine, fluoride and RO2 numbers. Three individuals appear to have this genotype, and family evidence is not at variance with our conclusions. All three individuals will be sensitive to suxamethonium.  相似文献   

2.
Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome.Replication-deficient human adenoviruses (Ad) have been widely investigated as ex vivo and in vivo gene delivery systems for human gene therapy. The ability of these vectors to mediate the efficient expression of candidate therapeutic or vaccine genes in a variety of cell types, including postmitotic cells, is considered an advantage over other gene transfer vectors (3, 28, 49). However, the successful application of currently available E1-defective Ad vectors in human gene therapy has been hampered by the fact that transgene expression is only transient in vivo (2, 15, 16, 33, 36, 46). This short-lived in vivo expression of the transgene has been explained, at least in part, by the induction in vivo of cytotoxic immune responses to cells infected with the Ad vector. Studies with rodent systems have suggested that cytotoxic T lymphocytes (CTLs) directed against virus antigens synthesized de novo in the transduced tissues play a major role in eliminating cells containing the E1-deleted viral genome (5658, 61). Consistent with the concept of cellular antiviral immunity, expression of transgenes is significantly extended in experimental rodent systems that are deficient in various components of the cellular immune system or that have been rendered immunocompromised by administration of pharmacological agents (2, 33, 37, 48, 60, 64).Based on the assumption that further reduction of viral antigen expression may lower the immune response and thus extend persistence of transgene expression, previous studies have investigated the consequences of deleting both E1 and an additional viral regulatory region, such as E2A or E4. The E2A region encodes a DNA binding protein (DBP) with specific affinity for single-stranded Ad DNA. The DNA binding function is essential for the initiation and elongation of viral DNA synthesis during the early phase of Ad infection. During the late phase of infection, DBP plays a central role in the activation of the major late promoter (MLP) (for a recent review, see reference 44). The E4 region, located at the right end of the viral genome, encodes several regulatory proteins with pleiotropic functions which are involved in the accumulation, splicing, and transport of early and late viral mRNAs, in DNA replication, and in virus particle assembly (reviewed in reference 44). The simultaneous deletion of E1 and E2A or of E1 and E4 should therefore further reduce the replication of the virus genome and the expression of early and late viral genes. Such multidefective vectors have been generated and tested in vitro and in vivo (9, 12, 17, 1921, 23, 24, 26, 34, 40, 52, 53, 59, 62, 63). Recombinant vectors with E1 deleted and carrying an E2A temperature-sensitive mutation (E2Ats) have been shown in vitro to express much smaller amounts of virus proteins, leading to extended transgene expression in cotton rats and mice (19, 20, 24, 59). To eliminate the risks of reversion of the E2Ats point mutation to a wild-type phenotype, improved vectors with both E1 and E2A deleted were subsequently generated in complementation cell lines coexpressing E1 and E2A genes (26, 40, 63). In vitro analysis of human cells infected by these viruses demonstrated that the double deletion completely abolished viral DNA replication and late protein synthesis (26). Similarly, E1/E4-deleted vectors have been generated in various in vitro complementation systems and tested in vitro and in vivo (9, 17, 23, 45, 52, 53, 62). These studies showed that deletion of both E1 and E4 did indeed reduce significantly the expression of early and late virus proteins (17, 23), leading to a decreased anti-Ad host immune response (23), reduced hepatotoxicity (17, 23, 52), and improved in vivo persistence of the transduced liver cells (17, 23, 52).Interpretation of these results is difficult, however, since all tested E1- and E1/E4-deleted vectors encoded the bacterial β-galactosidase (βgal) marker, whose strong immunogenicity is known to influence the in vivo persistence of Ad-transduced cells (32, 37). Moreover, the results described above are not consistent with the conclusions from other studies showing, in various immunocompetent mouse models, that cellular immunity to Ad antigens has no detectable impact on the persistence of the transduced cells (37, 40, 50, 51). Furthermore, in contrast to results of earlier studies (19, 20, 59), Fang et al. (21) demonstrated that injection of E1-deleted/E2Ats vectors into immunocompetent mice and hemophilia B dogs did not lead to an improvement of the persistence of transgene expression compared to that with isogenic E1-deleted vectors. Similarly, Morral et al. (40) did not observe any difference in persistence of transgene expression in mice injected with either vectors deleted in E1 only or vectors deleted in both E1 and E2A. Finally, the demonstration that some E4-encoded products can modulate transgene expression (1, 17, 36a) makes the evaluation of E1- and E1/E4-deleted vectors even more complex when persistence of transgene expression is used for direct comparison of the in vivo persistence of cells transduced by the two types of vectors.The precise influence of the host immune response to viral antigens on the in vivo persistence of the transduced cells, and hence the impact of further deletions in the virus genome, therefore still remains unclear. To investigate these questions, we generated a set of isogenic vectors with single deletions (AdE1°) and double deletions (AdE1°E2A° and AdE1°E4°) and their corresponding complementation cell lines and compared the biologies and immunogenicities of these vectors in vitro and in vivo. To eliminate any possible influence of transgene-encoded products on the interpretation of the in vivo results, we used E1-, E1/E2A-, and E1/E4-deleted vectors with no transgenes.  相似文献   

3.
Mode of Action of Colicins of Types E1, E2, E3, and K   总被引:5,自引:2,他引:3       下载免费PDF全文
The effect of colicins on deoxyribonucleic acid and protein synthesis, and also their effect on the ability of T4 phage to replicate in Escherichia coli K-12, were studied. Colicins of type K inhibited deoxyribonucleic acid synthesis, protein synthesis, and phage growth. Among colicins of type E, there was an absolute correlation between mode of action and subdivision into types E(1), E(2), and E(3).  相似文献   

4.
Escherichia coli strains were made multiply colicinogenic for the colicin plasmids E1, E2, or E3 (Col E1, Col E2, or Col E3, respectively) by both a deoxyribonucleic acid transformation system and bacterial conjugation. The multiply colicinogenic bacteria constructed exhibited an immunity to the colicins produced by all the plasmids they carried and also produced colicins corresponding to all the plasmids they carried. An incompatibility was observed among the plasmids. In doubly colicinogenic cells where the presence of two plasmids was established, Col E2 was lost more frequently than Col E3. In triply colicinogenic cells, Col E1, Col E2, and Col E3 were lost, with Col E3 being lost least frequently. A significant reduction in the acquisition of a conjugationally transferred Col E1 plasmid by cells colicinogenic for Col E1 was demonstrated.  相似文献   

5.
6.
细胞周期蛋白B1、D1和E真核表达载体的构建及表达   总被引:1,自引:0,他引:1  
目的:为研究细胞周期蛋白(cyclin)在肿瘤形成过程中的分子机制,构建带FLAG标签的细胞周期蛋白B1、D1、E的真核表达载体,并检测其在293T细胞中的表达。方法:以乳腺cDNA文库为模板,分别扩增细胞周期蛋白B1、D1、E基因全长编码区序列,克隆到pcDNA3-FLAG真核表达载体上;用脂质体介导的基因瞬时转染法,将重组正确的表达载体转染293T细胞,检测细胞中的FLAG融合蛋白的表达。结果:酶切鉴定和DNA序列分析显示构建了正确的FLAG-Cyclin真核表达载体,Western印迹分析表明克隆的载体都能在真核细胞中表达分子大小相符的重组蛋白。结论:构建了FLAG-CyclinBl、FIAG-CyclinDl、FLAG-CyclinE真核表达载体,为细胞周期蛋白及其相关蛋白的研究奠定了基础。  相似文献   

7.
Y J Hu  D B Wilson 《Gene》1988,71(2):331-337
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI and fragments in the size range from 4 to 15 kb were isolated, ligated into lambda gtWES.lambda B arms, packaged, and the recombinant phages plated on Escherichia coli. The plaques were screened for carboxymethyl cellulase (CMCase) activity by a gel overlay procedure, and 25 plaques were positive among the 15,000 plaques that were screened. Positive phages were amplified and used to prepare infected E. coli extracts which were assayed for CMCase activity before and after treatment with antisera prepared against five purified T. fusca beta 1-4 endoglucanases (E1-E5). One phage produced an enzyme that was inhibited by E1 antiserum, nine of the phages produced enzymes that were inhibited by E2 antiserum, 14 produced enzymes that were inhibited by E5 antiserum and the enzyme produced by the other phages was not inhibited by any of the five antisera. The DNA insert present in the phage coding for E1 was cut into a number of different fragments which were subcloned into E. coli first using lambda gtWES.lambda B and then plasmid pBR322. The smallest active subclone, pTE12, contained a 3.1-kb insert. The insert present in one of the phages coding for E2 was also subcloned and the smallest active subclone pTE23 contained a 2-kb insert. E. coli HB101 containing plasmid pTE12 or pTE23 produced enzymes that were identical to E1 and E2, respectively, in all the properties tested.  相似文献   

8.
9.

Background and Aims

The timing of flowering has a direct impact on successful seed production in plants. Flowering of soybean (Glycine max) is controlled by several E loci, and previous studies identified the genes responsible for the flowering loci E1, E2, E3 and E4. However, natural variation in these genes has not been fully elucidated. The aims of this study were the identification of new alleles, establishment of allele diagnoses, examination of allelic combinations for adaptability, and analysis of the integrated effect of these loci on flowering.

Methods

The sequences of these genes and their flanking regions were determined for 39 accessions by primer walking. Systematic discrimination among alleles was performed using DNA markers. Genotypes at the E1E4 loci were determined for 63 accessions covering several ecological types using DNA markers and sequencing, and flowering times of these accessions at three sowing times were recorded.

Key Results

A new allele with an insertion of a long interspersed nuclear element (LINE) at the promoter of the E1 locus (e1-re) was identified. Insertion and deletion of 36 bases in the eighth intron (E2-in and E2-dl) were observed at the E2 locus. Systematic discrimination among the alleles at the E1E3 loci was achieved using PCR-based markers. Allelic combinations at the E1E4 loci were found to be associated with ecological types, and about 62–66 % of variation of flowering time could be attributed to these loci.

Conclusions

The study advances understanding of the combined roles of the E1E4 loci in flowering and geographic adaptation, and suggests the existence of unidentified genes for flowering in soybean,  相似文献   

10.
Persistent human papillomavirus (HPV)-associated benign and malignant lesions are a major cause of morbidity and mortality worldwide. Vaccination against HPV early proteins could provide an effective means of treating individuals with established infections. Recombinant vesicular stomatitis virus (VSV) vectors have been used previously to elicit strong humoral and cellular immune responses and develop prophylactic vaccines. We have shown that VSV vectors also can be used to elicit therapeutic immunity in the cottontail rabbit papillomavirus (CRPV)-rabbit model of high-risk HPV infection. In the present study, three new VSV vectors expressing the CRPV E1, E2, or E7 protein were produced and compared to the previously generated VSV-E6 vector for therapeutic efficacy. To determine whether vaccine efficacy could be augmented by simultaneous vaccination against two CRPV proteins, the four vaccines were delivered individually and in all possible pairings to rabbits 1 week after CRPV infection. Control rabbits received the recombinant wild-type VSV vector or medium only. Cumulative papilloma volumes were computed for analysis of the data. The analyses showed that VSV-based vaccination against the E1, E2, E6, or E7 protein significantly reduced papilloma volumes relative to those of the controls. Furthermore, VSV-based CRPV vaccination cured all of the papillomas in 5 of 30 rabbits. Of the individual vaccines, VSV-E7 was the most effective. The VSV-E7 vaccine alone was the most effective, as it reduced cumulative papilloma volumes by 96.9% overall, relative to those of the controls, and ultimately eliminated all of the disease in all of the vaccinees. Vaccine pairing was not, however, found to be beneficial, suggesting antigenic competition between the coexpressed CRPV proteins. These preclinical results, obtained in a physiologically relevant animal model of HPV infection, demonstrate that VSV vectors deserve serious consideration for further development as therapeutic antitumor vaccines.  相似文献   

11.
12.
Papillomaviruses induce benign squamous epithelial lesions that infrequently are associated with uncontrolled growth or malignant conversion. The virus-encoded oncogenes are clearly under negative regulation since papillomaviruses can latently infect cells and since different levels of viral oncogene expression are seen within the layers of differentiating infected epitheliomas. We used bovine papillomavirus type 1 (BPV-1) to investigate the mechanisms involved in the negative regulation of transformation. We found that the following two distinct and interacting mechanisms negatively regulate BPV-1 transformation effected by virally encoded trans-acting factors: (i) E2 repressors suppress transformation by the E6 and E7 oncogenes, and (ii) E1 and the E2 transactivator suppress transformation by the E6, E7, and E5 oncogenes. These systems interact in that the E2 repressors function to relieve the transformation suppression effected by the E1 and E2 transactivator genes. A BPV-1 mutant that lacked E2 repressors and E1 had greatly augmented transformation capacity. Analysis of this mutant revealed that the enhanced transformation was due to expression of the E6 and E7 genes in the absence of E5, revealing a previously unappreciated potency and synergy for the BPV-1 E6 and E7 oncogenes.  相似文献   

13.
Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a beta-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of beta-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the beta-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.  相似文献   

14.
Soybean near isogenic lines (NILs), contrasting for maturity and photoperiod sensitivity loci, were genotyped with approximately 430 mapped simple sequence repeats (SSRs), also known as microsatellite markers. By analysis of allele distributions across the NILs, it was possible to confirm the map location of the Dt1 indeterminate growth locus, to refine the SSR mapping of the T tawny pubescence locus, to map E1 and E3 maturity loci with molecular markers, and to map the E4 and E7 maturity loci for the first time. Molecular markers flanking these loci are now available for marker-assisted breeding for these traits. Analysis of map locations identified a putative homologous relationship among four chromosomal regions; one in the middle of linkage group (LG) C2 carrying E1 and E7, one on LG I carrying E4, one at the top of LG C2, at which there is a reproductive period quantitative trait locus (QTL), and the fourth on LG B1. Other evidence suggests that homology also exists between the E1 + E7 region on LG C2 and a region on LG L linked to a pod maturity QTL. Homology relationships predict possible locations in the soybean genome of additional maturity loci, as well as which maturity loci may share a common evolutionary origin and similar mechanism(s) of action.  相似文献   

15.
16.
17.
E1h, a new allele at cholinesterase locus 1   总被引:1,自引:0,他引:1  
Unusual inhibition characteristics in two unrelated suxamethonium-sensitive individuals were indicative of a new allele, E1h, segregating with the E1a gene. Family studies substantiate this hypothesis and three new genotypes are recognised.  相似文献   

18.
19.
We have analyzed the structure of rubella virus proteins labeled metabolically with [35S]methionine, [3H]mannose, and [3H]glucosamine or externally with [3H]borohydride after galactose oxidase treatment. Four structural proteins, with MrS of about 58,000 (E1), 47,000 (E2a), 42,000 (E2b), and 33,000 (C), were resolved on sodium dodecyl sulfate-polyacrylamide gels. Tryptic peptide maps obtained from [35S]methionine-labeled proteins indicated that E1 and C were unrelated to each other and to E2a and E2b, whereas the latter two gave similar, if not identical, maps. E1, E2a, and E2b were associated with the envelope and were located externally on the virus particle, whereas the C protein was associated with the RNA in the nucleocapsid. Solubilization of the virus with Triton X-100, followed by removal of the nucleocapsid and the detergent, resulted in the formation of soluble envelope protein complexes (rosettes) containing E1, E2a, and E2b. Although external labeling with [3H]borohydride and metabolic labeling with [3H]glucosamine suggested that all three proteins were glycosylated, only E1 and E2b were efficiently labeled with [3H]mannose. It is thus possible that the difference in migration between E2a and E2b is due to differences in glycosylation. Analysis by immunoprecipitation and sodium dodecyl sulfate-gel electrophoresis of intracellular [35S]methionine-labeled structural proteins synthesized in the presence and absence of tunicamycin supported the conclusion that E1 and E2 are glycoproteins. Unglycosylated E1 and E2 had an Mr of about 53,000 and 30,000, respectively.  相似文献   

20.
A synergistic antiplatelet effect between prostaglandins (PG), cAMP-stimulators and nitric oxide (NO), a cGMP-stimulator, has already been described. Data on a synergism between NO and the metabolites of PGE1, however, are lacking so far. We therefore tested the antiplatelet activity of the metabolites of PGE1 alone and their synergism with NO on human platelets of 8 healthy volunteers in vitro. 13,14-DH-PGE1 (ID 50 = 10.8 ng/ml platelet rich plasma (PRP)) was the only PGE1 metabolite inhibiting the ADP-induced platelet aggregation, its efficacy being 76.4% of the parent compound PGE1 (ID 50 = 8.25 ng/ml PRP). NO (ID 50 = 0.52 microM) also inhibited platelet aggregation. The combined addition of 13,14-dihydro-prostaglandin E1 (13,14-DH-PGE1) and NO caused an additive effect. The other PGE1-metabolites tested, 15-keto prostaglandin (15-K-PGE1) (ID 50 = 16.2. micrograms/ml PRP) and 15-keto-13,14-dihydro-prostaglandin(15-K-13,14-DH-PGE1) (ID 50 = 14.8 micrograms/ml PRP), neither had any relevant antiaggregatory capacity themselves nor a synergistic effect with NO. These findings could be of clinical relevance as a NO-synergism may occur not only with therapeutically administered PGE1 but also with its biologically active metabolite 13,14-DH-PGE1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号