首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During growth of Bdellovibrio bacteriovorus on Escherichia coli, there was a marked preferential use of E. coli phosphorus over exogenous orthophosphate even though the latter permeated into the intraperiplasmic space where the bdellovibrio was growing. This preferential use occurred to an equal extent for lipid phosphorus and nucleic acid phosphorus. Exogenous thymidine-5'-monophosphate competed effectively with [3H]thymine residues of E. coli as a precursor for bdellovibrio deoxyribonucleic acid; exogenous thymidine competed less effectively and thymine and uridine not at all. A mixture of exogenous nucleoside-5'-monophosphates equilibrated effectively with E. coli phosphorus as a phosphorus source for B. bacteriovorus; the nucleotide phosphorus entered preferentially into bdellovibrio nucleic acids. A comparable mixture of exogenous nucleosides plus orthophosphate had only a small effect on utilization of E. coli phosphorus by B. bacteriovorus, as did orthophosphate alone. A mixture of exogenous deoxyriboside monophosphates equilibrium effectively with E. coli phosphorus as a phosphorus source for bdellovibrio growth; the phosphorus from this source entered preferentially into deoxyribonucleic acid. These data show that nucleoside monophosphates derived from the substrate organism are utilized directly for n-cleic acid biosynthesis by B. bacteriovorus growing intraperiplasmically. As a consequence, the phosphate ester bonds preexisting in the nucleic acids of the substrate organism are conserved by the bdellovibrio, presumably lessening its energy requirement for intraperiplasmic growth. The data also suggest, but do not prove, that the phosphate ester bonds of phospholipids are also conserved.  相似文献   

2.
During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J on Escherichia coli some 30 to 60% of the initial E. coli RNA-ribose disappeared as cell-associated orcinol-positive material. The levels of RNA-ribose in the suspending buffer after growth together with the RNA-ribose used for bdellovibrio DNA synthesis accounted for 50% or less of the missing RNA-ribose. With intraperiplasmic growth in the presence of added U-14C-labeled CMP, GMP, or UMP, radioactivity was found both in the respired CO2 and incorporated into the bdellovibrio cell components. The addition of exogenous unlabeled ribonucleotides markedly reduced the amounts of both the 14CO2 and 14C incorporated into the progeny bdellovibrios. During intraperiplasmic growth of B. bacteriovorus on [U-14C]ribose-labeled E. coli BJ565, ca. 74% and ca. 19% of the initial 14C was incorporated into the progeny bdellovibrios and respired CO2, respectively. Under similar growth conditions, the addition of glutamate substantially reduced only the 14CO2; however, added ribonucleotides reduced both the 14CO2 and the 14C incorporated into the progeny bdellovibrios. No similar effects were found with added ribose-5-phosphate. The distribution of 14C in the major cell components was similar in progeny bdellovibrios whether obtained from growth on [U-14C]ribose-labeled E. coli BJ565 or from E. coli plus added U-14C-labeled ribonucleotides. After intraperiplasmic growth of B. bacteriovorus on [5,6-3H-]uracil-[U-14C]ribose-labeled E. coli BJ565 (normal or heat treated), the whole-cell 14C/3H ratio of the progeny bdellovibrios was some 50% greater and reflected the higher 14C/3H ratios found in the cell fractions. B. bacteriovorus and E. coli cell extracts both contained 5'-nucleotidase, uridine phosphorylase, purine phosphorylase, deoxyribose-5-phosphate aldolase, transketolase, thymidine phosphorylase, phosphodeoxyribomutase, and transaldolase enzyme activities. The latter three enzyme activities were either absent or very low in cell extracts prepared from heat-treated E. coli cells. It is concluded that during intraperiplasmic growth B. bacteriovorus degrades some 20 to 40% of the ribonucleotides derived from the initial E. coli RNA into the base and ribose-1-phosphate moieties. The ribose-1-phosphate is further metabolized by B. bacteriovorus both for energy production and for biosynthesis, of non-nucleic acid cell material. In addition, the data indicate that during intraperiplasmic growth B. bacteriovorus can metabolize ribose only if this compound is available to it as the ribonucleoside monophosphate.  相似文献   

3.
During growth of Bdellovibrio bacteriovorus on [2-14C]deoxythymidine-labeled Escherichia coli, approximately 30% of the radioactivity was released to the culture fluid as nucleoside monophosphates and free bases; the remainder was incorporated by the bdellovibrio. By 60 min after bdellovibrio attack, when only 10% of the E. coli deoxyribonucleic acid (DNA) had been solubilized, the substrate cell DNA was degraded to 5 X 10(5)-dalton fragments retained within the bdelloplast. Kinetic studies showed these fragments were formed as the result of sequential accumulation of single- and then double-strand cuts. DNA fragments between 2 X 10(3) and 5 X 10(5) daltons were never observed. Chloramphenicol, added at various times after initiation of bdellovibrio intraperiplasmic growth on normal or on heated E. coli, which have inactivated deoxyribonucleases, inhibited further breakdown and solubilization of substrate cell DNA. Analysis of these intraperiplasmic culture deoxyribonuclease activities showed that bdellovibrio deoxyribonucleases are synthesized while E. coli nucleases are inactivated. It is concluded that continuous and sequential synthesis of bdellovibrio deoxyribonucleases of apparently differing specificities is necessary for complete breakdown and solubilization of substrate cell DNA, and that substrate cell deoxyribonucleases are not involved in any significant way in the degradation process.  相似文献   

4.
During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J, the substrate cell surface becomes more hydrophobic. This was shown (i) by comparing the sensitivity to hydrophobic antibiotics of wild-type and lipopolysaccharide mutant strains of Salmonella typhimurium to that of the bdellovibrio growing on these strains and (ii) by measuring the binding efficiency of these strains, Escherichia coli, and their derived bdelloplasts to octyl Sepharose. The kinetics of increase in surface hydrophobicity was similar to the kinetics of the conversion of the substrate cell peptidoglycan to a lysozyme-resistant form (M. Thomashow and S. Rittenberg, J. Bacteriol. 135:1008-1014, 1978), and hydrophobicity reached a maximum at about 60 min in a synchronous culture. The change in hydrophobicity was inhibited by chloramphenicol, suggesting that bdellovibrio protein synthesis was required. Control experiments revealed that the free-swimming bdellovibrio had a more hydrophobic surface than the deep rough mutants of S. typhimurium.  相似文献   

5.
Selected enzyme activities were measured in extracts of the total cell pellets obtained at various times during aerobic intraperiplasmic growth of Bdellovibrio bacteriovorus 109J on anaerobically grown Escherichia coli substrate cells. Initially, the glycolytic enzyme activities were associated with the input of E. coli and the tricarboxylic acid cycle enzyme activities with the input of bdellovibrios. During the first 90 min of Bdellovibrio development, the glycolytic activities declined about 25 to 60%, whereas the tricarboxylic acid cycle activities increased about 10%. Between 110 and 180 min, the glycolytic activities decreased to trace levels and tricarboxylic acid cycle activities increased about 50 to 90%. Both bdellovibrio cell extracts and the cell-free growth menstruum (obtained after bdellovibrio growth on E. coli) caused the inactivation of glycolytic enzymes in E. coli extracts.  相似文献   

6.
The Y-ATP (energy efficiency) of intraperiplasmic growth of Bdellovibrio bacteriovorus was determined from the distribution of radioactivity of the substrate organism ([U-14C]Escherichia coli) btween CO2 and bdellovibrio cells at the end of growth. A "best" Y-ATP value of 18.5 was obtained from single growth cycle experiments and an average value of 25.9 from multicycle experiments. Both values are much higher than the usual value of 10.5 for bacteria growing in rich media. The bases for the unusual energy efficiency for growth of B. bacteriovorus are discussed.  相似文献   

7.
Heat treatment (55 degrees C for 40 min) of cell suspensions in buffer (ca. 3 x 10(9) cells per ml) of Escherichia coli ML35 caused a 4- to 4.5-log loss of cell viability. Similar results were found for several other E. coli strains that were examined. As a result of this heat treatment, 260-nm- and 280-nm-absorbing materials were released into the suspending buffer, along with about 10% of the total cellular radioactivity, when cells uniformly labeled with (14)C were used. In comparison with untreated cells, heat-treated E. coli ML35 cells showed (i) no significant changes in macromolecular composition other than ca. 22% less RNA content, (ii) an increased permeability to o-nitrophenyl-beta-d-galactopyranoside (a compound to which untreated cells are impermeable), (iii) almost complete loss of respiratory potential, and (iv) substantial losses of numerous glycolytic enzyme activities in cell extracts prepared from these cells. Intraperiplasmic development of Bdellovibrio bacteriovorus 109J with heat-treated E. coli ML35 as substrate cells appeared normal when observed microscopically, although bdellovibrio attachment and resultant bdelloplast formation were slightly retarded. No significant changes were observed in cell yields or in the ratios and contents of DNA, RNA, or protein between bdellovibrios harvested from untreated cells and those from heat-treated substrate cells after single-developmental-cycle growth on these cells. The average Y(ATP) values for intraperiplasmic growth on untreated and heat-treated substrate cells were 16.0 and 17.9, respectively. It is concluded that intraperiplasmic bdellovibrio growth on gently heat-treated E. coli substrate cells is very similar to growth on untreated substrate cells, even though the former substrate cells are nonviable and substantially impaired in many metabolic activities.  相似文献   

8.
When cells of either Bdellovibrio bacteriovorus 109J or Bdellovibrio stolpii UKi2 were subjected to osmotic shock by treatment with sucrose-EDTA and MgCl2 solutions, only trace amounts of proteins or enzyme activities were released into the shock fluid. In contrast, when nongrowing cells were converted to motile, osmotically stable, peptidoglycan-free spheroplasts by penicillin treatment, numerous proteins were released into the suspending fluid. For both species, this suspending fluid contained substantial levels of 5'-nucleotidase, purine phosphorylase, and deoxyribose-phosphate aldolase. Penicillin treatment also released aminoendopeptidase N from B. bacteriovorus, but not from B. stolpii. Penicillin treatment did not cause release of cytoplasmic enzymes such as malate dehydrogenase. The data indicated that bdellovibrios possess periplasmic enzymes or peripheral enzymes associated with the cell wall complex. During intraperiplasmic bdellovibrio growth, periplasmic and cytoplasmic enzymes of the Escherichia coli substrate cell were not released upon formation of the spherical bdelloplast during bdellovibrio penetration. Most of the E. coli enzymes were retained within the bdelloplast until later in the growth cycle, when they became inactivated or released into the suspending buffer or both.  相似文献   

9.
Outer membrane preparations of Bdellovibrio bacteriovorus grown intraperiplasmically on Escherichia coli containing OmpF were prepared by the Triton X-100 procedure of Schnaitman (J. Bacteriol. 108:545-552, 1971). They contained a protein that migrated to almost the same position as E. coli OmpF in sodium dodecyl sulfate-acrylamide gradient gel electrophoresis and to the same position as E. coli OmpF when urea was incorporated into the gel. The mobility of this protein increased relative to that of OmpC in urea-containing gels as does E. coli OmpF. However, the same protein was also produced during axenic growth and during intraperiplasmic growth on prey lacking OmpF. The peptide profile generated by partial proteolysis of this protein showed no homology to that produced from E. coli OmpF. We conclude that B. bacteriovorus synthesizes an OmpF-like protein. Previous claims that the bdellovibrio incorporates an intact E. coli OmpF are not consistent with these observations.  相似文献   

10.
Wild-type bdellovibrios are obligate intraperiplasmic parasites of other gram-negative bacteria. However, spontaneous mutants that can be cultured in the absence of host cells occur at a frequency of 10(-6) to 10(-7). Such host-independent (H-I) mutants generally display diminished intraperiplasmic-growth capabilities and form plaques that are smaller and more turbid than those formed by wild-type strains on lawns of host cells. An analysis of the gene(s) responsible for the H-I phenotype should provide significant insight into the nature of Bdellovibrio host dependence. Toward this end, a conjugation procedure to transfer both IncQ and IncP vectors from Escherichia coli to Bdellovibrio bacteriovorus was developed. It was found that IncQ-type plasmids were capable of autonomous replication in B. bacteriovorus, while IncP derivatives were not. However, IncP plasmids could be maintained in B. bacteriovorus via homologous recombination through cloned B. bacteriovorus DNA sequences. It was also found that genomic libraries of wild-type B. bacteriovorus 109J DNA constructed in the IncP cosmid pVK100 were stably maintained in E. coli; those constructed in the IncQ cosmid pBM33 were unstable. Finally, we used the conjugation procedure and the B. bacteriovorus libraries to identify a 5.6-kb BamHI fragment of wild-type B. bacteriovorus DNA that significantly enhanced the plaque-forming ability of an H-I mutant, B. bacteriovorus BB5.  相似文献   

11.
During growth of Bdellovibrio bacteriovorus on (2-14C)uracil-labeled Escherichia coli approximately 50% of the radioactivity is incorporated by the bdellovibrio and most of the remainder is released as free nucleic acid bases. Kinetic studies showed that 50 and 30S ribosomal particles and 23 and 16S ribosomal ribonucleic acid (RNA) of E. coli are almost completely degraded by the first 90 min in a 210- to 240-min bdellovibrio developmental cycle. Synthesis of bdellovibrio ribosomal RNA was first detected after 90 min. The specific activity and the ratio of radioactivity in the bases of the synthesized bdellovibrio RNA was essentially the same as those of the substrate E. coli. The total radioactivity of the bdellovibrio deoxyribonucleic acid (DNA) exceeded that in the DNA of the substrate E. coli cell, and the ratio of radioactivity of cytosine to thymine residues differed. Intraperiplasmic growth of B. bacteriovorus in the presence of added nucleoside monophosphates (singly or in combination) significantly decreased the uptake of radioactivity from (2-14C)uracil-labeled E. coli; nucleosides or nucleic acid bases did not. It is concluded that the RNA of the substrate cell, in the form of nucleoside monophosphates, is the major or exclusive precursor of the bdellovirbrio RNA and also serves as a precursor for some of the bdellovibrio DNA.  相似文献   

12.
Data are presented showing that a large proportion of the fatty acids of Bdellovibrio bacteriovorus grown intraperiplasmically are derived unaltered from the fatty acids of its substrate organism. Those fatty acids of the bdellovibrio not homologous with those of the substrate organism are derived mainly by metabolic alteration of preexisting fatty acids in the latter. De novo synthesis from acetate occurs only to a small extent. These characteristics of bdellovibrio physiology are in part responsible for its minimal energy expenditure for intraperiplasmic growth. The data presented also indicate that B. bacteriovorus is capable of hydrogenating unsaturated fatty acids, of beta-oxidation of fatty acids, and of regulating the proportion of saturated and unsaturated fatty acids in the lipids.  相似文献   

13.
During the growth of Bdellovibrio bacteriovorus on Pseudomonas putida or Escherichia coli in either 10(-3)m tris(hydroxymethyl)aminomethane or in dilute nutrient broth, the host deoxyribonucleic acid (DNA) was rapidly degraded, and by 30 to 60 min after the initiation of the bdellovibrio development cycle essentially all host DNA became nonbandable in CsCl gradients. At this stage the host DNA degradation products were nondiffusable, and there was no appreciable pool of low-molecular-weight (cold acid soluble) DNA fragments in the cells or in the suspending medium. Bdellovibrio DNA synthesis occurred only after degradation of host DNA to a nonbandable form was complete. The synthesis occurred in a continuous fashion with P. putida as the host and in two separate periods with E. coli as host. By using E. coli containing a (3)H-thymidine label, it was shown that 73%, on the average, of the thymine residues of host DNA were incorporated into bdellovibrio DNA when E. coli was the only source of nutrient. In the presence of dilute nutrient broth, the host cells still served as the major source of precursors for bdellovibrio DNA synthesis, with only 20% of the precursors arising from the exogenous nutrients. The data indicate an efficient and controlled utilization of host DNA by the bdellovibrio. The host DNA is apparently degraded early in the developmental cycle to oligonucleotides of intermediate molecular weight from which the biosynthetic monomers are generated only as they become needed for bdellovibrio DNA synthesis.  相似文献   

14.
The intracellular life cycle of Bdellovibrio bacteriovorus 109 growing on Escherichia coli in a dilute nutrient medium exhibits a period of constant infective titer while the parasite grows and elongates inside the host cell. This period is terminated after 2 to 4 hr, and the number of the plaque-forming units in the culture rises rapidly to as much as six times the initial titer. The growth pattern of Bdellovibrio is similar with actively growing or resting host cells, or with host cells killed by ultraviolet irradiation or by heating at 70 C. The yield of B. bacteriovorus strain 109 in two-membered cultures with E. coli B depends on the host concentration and may reach 7.5 x 10(10) cells per ml. Penicillin, which has no effect on the attachment and penetration of Bdellovibrio, inhibits its multiplication.  相似文献   

15.
During intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the substrate cell peptidoglycan is extensively modified as it is converted to bdelloplast peptidoglycan. The initially lysozyme-sensitive peptidoglycan of E. coli was rapidly converted to a lysozyme-resistant form. The conversion was due to the N-deacetylation of a large portion of the peptidoglycan amino sugars. Chemically acetylating the isolated peptidoglycan restored its sensitivity to lysozyme digestion. However, approximately half of the products of lysozyme digestion exhibited hydrophobic interactions that were shown not to be due to the presence of protein. This suggests that a molecule capable of hydrophobic interactions, other than protein, becomes linked to the bdelloplast peptidoglycan. The data also suggest that much of the Braun lipoprotein is removed from the E. coli peptidoglycan early during bdellovibrio development.  相似文献   

16.
Facultatively Parasitic Strain of Bdellovibrio bacteriovorus   总被引:22,自引:18,他引:4       下载免费PDF全文
A strain of Bdellovibrio bacteriovorus (designated strain UKi2) was isolated which was capable of growing either saprophytically in host-free medium or endoparasitically in Escherichia coli B/r. It was quantitatively determined that each bdellovibrio could develop in solid medium to produce a colony, and 65% of the cells in a late exponential-phase culture were capable of inducing E. coli B/r spheroplasts. A photomicrographic sequence of single E. coli spheroplasts containing bdellovibrios demonstrated that parasitically derived B. bacteriovorus UKi2 could develop saprophytically after release from the host cells. Strain UKi2 appears to be morphologically quite similar to previously described obligately parasitic bdellovibrios; biochemical data on this strain suggests its close relationship to some of the previously described host-independent strains of Bdellovibrio.  相似文献   

17.
Bdellovibrio bacteriovorous attacks and penetrates other gram-negative bacteria, creating a growth chamber termed a bdelloplast. We have found that exposing the bdelloplasts to EDTA, followed by treatment with a lytic enzyme concentrate derived from bdellovirio cultures, prematurely released the intraperiplasmically growing bdellovibrios at any time during their growth cycle. Upon release, the growth-form bdellovibrios terminated any initiated rounds of DNA synthesis and differentiated into motile attack-form cells. The ability of growth-form cells to synthesize DNA appears to depend upon an initiation signal that is not received until about 60 min after attack. Each subsequent round of DNA synthesis by the growing bdellovibrio filaments seems to require an additional initiation signal that is provided by their intraperiplasmic environment. Differentiation included fragmentation into multiple progeny cells to a degree proportional to the extent of intraperiplasmic growth. This differentiation could be performed totally at the expense of cellular reserves. The significance of these data to an understanding of the regulation of differentiation in bdellovibrios is discussed.  相似文献   

18.
During the initial stages of intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the peptidoglycan of the E. coli becomes acylated with long-chain fatty acids, primarily palmitic acid (60%) and oleic acid (20%). The attachment of the fatty acids to the peptidoglycan involves a carboxylic-ester bond, i.e., they were removed by treatment with alkaline hydroxylamine. Their linkage to the peptidoglycan does not involve a protein molecule. When the bdelloplast peptidoglycan was digested with lysozyme, the fatty acid-containing split products behaved as lipopeptidoglycan, i.e., they were extracted into the organic phase of 1-butanol:acetic acid:water (4:15) two-phase system; all of the lysozyme split products generated from normal E. coli peptidoglycan were extracted into the water phase. It is suggested that the function of the acylation reaction is to help stabilize the bdelloplast outer membrane against osmotic forces. In addition, a model is presented to explain how a bdellovibrio penetrates, stabilizes, and lyses a substrate cell.  相似文献   

19.
During penetration of Bdellovibrio bacteriovorus into Escherchia coli, two enzymatic activities, a glycanase and a peptidase, rapidly solubilized some 10 to 15% of the E. coli peptidoglycan. The glycanase activity, which solubilizes peptidoglycan amino sugars, came to a sharp halt with completion of the penetration process. Peptidase activity, which cleaves diaminopimelic acid residues from the peptidoglycan, continued, but at a decreasing rate. By 90 min after bdellovibrio attack, some 30% of the initial E. coli diaminopimelic acid residues were solubilized and present in the culture fluid as free diaminopimelic acid. During bdellovibrio penetration some 25% of the lipopolysaccharide glucosamine was also solubilized by an as yet undefined enzymatic activity that yielded products having molecular weights below 2,000. The solubilization of E. coli lipopolysaccharide glucosamine also terminated at completion of bdellovibrio penetration. At the end of bdellovibrio growth, a second period of rapid solubilization of bdelloplast peptidoglycan began which resulted in lysis of the bdelloplast and complete solubilization of the peptidoglycan amino sugars and diaminopimelic acid. The final lytic enzyme(s) was synthesized just before the time of lysis.  相似文献   

20.
Early host damage in the infection cycle of Bdellovibrio bacteriovorus   总被引:28,自引:21,他引:7       下载免费PDF全文
The effects of bdellovibrio infection on host permeability and respiration were investigated by measuring respiration rates and the rate of o-nitrophenyl-beta-d-galactopyranoside hydrolysis during the course of single infection cycles of Bdellovibrio bacteriovorus strain 109 growing on Escherichia coli ML 35 (lac i(-)z(+)y(-)). The data show that among the very early consequences of parasite attack on the host are an increase in permeability and a general disruption of respiratory activity of the host, and it is suggested that both phenomena stem from early damage to host membrane. The rapid onset of damage after inception of the cycle and the failure of streptomycin to prevent the damage indicate that complete penetration of the parasite into the host is not a requirement for the observed effects. The data also show that bdellovibrio does not use host energy-generating mechanisms for its growth and suggest that the parasites may have a search mechanism that permits them, to some degree, to distinguish between infected and uninfected hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号