首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three NADP-dependent isocitrate dehydrogenase isozymes in the teleost, Fundulus heteroclitus (L.), exhibit differences in tissue and subcellular distribution. These three proteins were purified and characterized as to native and subunit molecular weight, isoelectric pH, susceptibility to thermal denaturation, and certain kinetic parameters (Km and Vmax) for the oxidative decarboxylation of isocitrate at 25 degrees C and pH 7.4. The enzymes are dimers of 90 +/- 4 kDa with subunit molecular masses of 45 +/- 3 kDa. Isoelectric pH values were 7.00, 5.19, and 5.29 for IDH-A2, IDH-B2 and IDH-C2 (where IDH represents isocitrate dehydrogenase), respectively. While the monomer-dimer equilibrium is not influenced by substrates, the equilibrium appears to respond to buffer concentration and temperature. Enzyme activity is not affected upon dilution in the presence of buffer containing bovine serum albumin, however, its activity declines rapidly in the absence of bovine serum albumin. Thermal stability varies among the isozymes, and they do not denature by a simple first-order process. The presence of substrates, metal, and coenzymes independently provided enzyme stability, suggesting a random mechanism of substrate and cofactor binding. While IDH-A2 and IDH-B2 have identical KISOCm, IDH-B2 has a lower KNADPm. The most common mitochondrial isozyme (IDH-C2) has a greater KISOCm than either the less common mitochondrial isozyme (IDH-A2) or the cytoplasmic enzyme (IDH-B2). The KNADPm for IDH-C2 was the same as that of IDH-A2 but greater than that of IDH-B2. These Km differences are consistent with the cytoplasmic-mitochondrial shuttling of NADPH-reducing equivalents into the cytoplasm.  相似文献   

2.
The fish, Fundulus heteroclitus (L.), like most advanced teleosts, possesses duplicate loci for the glycolytic enzyme, glucose-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9). The locus for the GPI-A2 (where GPI represents glucose-phosphate isomerase) isozyme is preferentially expressed in anaerobic tissues such as white skeletal muscle, while GPI-B2 predominates in aerobic tissues like liver and red muscle. We questioned whether this tissue specificity would be reflected in unique structural and functional characteristics of the respective isozymes. Consequently, an analysis of the two isozymes was undertaken. The enzymes were purified by a combination of ion-exchange chromatography and isoelectric focusing. Each isozyme was characterized as to native and subunit molecular weight, isoelectric pH, and susceptibility to thermal denaturation. Both were dimeric enzymes, with native molecular masses of 110 kDa. The isoelectric pH values for GPI-A2 and GPI-B2 were 7.9 and 6.4, respectively. Differences were apparent in thermal stability, i.e. GPI-A2 was more stable than GPI-B2. Kinetic properties were investigated as a function of both pH and temperature. The Km values for fructose 6-phosphate (Fru-6-P) differed between the isozymes at low pH, but no significant differences were observed at higher pH. The inhibition constant (Ki) for 6-phosphogluconate (6-P-gluconate) was pH dependent. GPI-A2 was slightly more sensitive to 6-P-gluconate inhibition than GPI-B2 between pH 7.0 and 8.5. The Km for Fru-6-P was temperature dependent for the GPI-B2 isozyme, but relatively temperature independent for GPI-A2 between 10 and 35 degrees C. The Ki for 6-P-gluconate was temperature dependent for both isozymes. The Ki values for GPI-A2 were consistently lower than those for GPI-B2. Energies of activation differed between the two isozymes by 4.4 kcal with GPI-A2 having the lower value. While delta G values were identical for the isozymes, their delta H and delta S values differed significantly. The structural and kinetic differences that exist between the glucose-phosphate isomerase isozymes appear to be tailored to the unique metabolic demands of the tissues in which these Gpi loci are expressed.  相似文献   

3.
The RS-isomers of beta-mercapto-alpha-ketoglutarate, beta-methylmercapto-alpha-ketoglutarate and beta-methylmercapto-alpha-hydroxyglutarate have been synthesized. Beta-Mercapto-alpha-ketoglutarate was a potent inhibitor, competitive with isocitrate and noncompetitive with NADP+, of the mitochondrial NADP-specific isozyme from pig heart (Ki = 5 nM; Km (DL-isocitrate)/Ki(RS-beta-mercapto-alpha-ketoglutarate) = 650) and pig liver, the cytosolic isozyme from pig liver (I0.5 = 23 nM), and the NADP-linked enzymes from yeast (Ki = 58 nM) and Escherichia coli (Ki = 58 nM) at pH 7.4 and with Mg2+ as activator. beta-Mercapto-alpha-ketoglutarate was also an effective inhibitor of NADP-isocitrate-dehydrogenase activity in intact liver mitochondria. beta-Mercapto-alpha-ketoglutarate was a much less potent inhibitor for heart NAD-isocitrate dehydrogenase (Ki = 520 nM) than for the NADP-specific enzyme. beta-Methylmercapto-alpha-ketoglutarate (I0.5 = 10 microM) was a much less effective inhibitor than the beta-mercapto derivative for heart NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarates were substrates for the oxidation of NADPH by heart NADP-isocitrate dehydrogenase without requiring CO2. beta-Methylmercapto-alpha-hydroxyglutarate, the expected product of reduction of beta-methylmercapto-alpha-ketoglutarate, did not cause reduction of NADP+ but it was an inhibitor competitive with isocitrate for NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarate derivatives were alternate substrates for alpha-ketoglutarate dehydrogenase and the cytosolic and mitochondrial isozymes of heart aspartate aminotransferase but had no effect on glutamate dehydrogenase or alanine aminotransferase.  相似文献   

4.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

5.
Summary Biochemical properties of cytoplasmic and mitochondrial isozymes of isocitrate dehydrogenase from DBA/2J mice were compared under various experimental conditions. These included Km determinations, coenzyme specificity, pH dependence, urea, iodoacetate and thermal inactivation and fluorescence titration studies. From these comparative studies each isozyme was found to have distinct coenzyme specificity, thermal stability and sensitivity to alkylation. In the case of the cytoplasmic isozyme, both NADP+ and isocitrate protect the enzyme against thermal denaturation but not iodoacetate inactivation. On the contrary, neither NADP+ nor isocitrate protects the mitochondrial enzyme against thermal or iodoacetate inactivation. Both isozymes exhibit similar fluorescence properties. NADP+ and NADPH, but not isocitrate, cause quenching of protein fluorescence. Enhancement of coenzyme fluorescence and protein energy transfer was observed when either isozyme was added to NADPH solutions. Further addition of isocitrate or isocitrate-Mg++ to a NADPH-enzyme solution caused a decrease of the enhancement of coenzyme fluorescence and protein energy transfer, but not quenching of protein fluorescence, indicating the formation of a ternary complex. This observation precludes the mechanism of mutual exclusion between NADPH and isocitrate in the active site of the enzyme.Abbreviations used IDH isocitrate dehydrogenase - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - TNADP+ thionicotinamide-adenine dinucoleotide phosphate - AcPyADP+ 3-acetylpyridine-adenine dinucleotide phosphate NIH Visiting Fellow.  相似文献   

6.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities.  相似文献   

7.
Summary Cytoplasmic and mitochondrial isozymes of NADP+-dependent isocitrate dehydrogenase were purified from kidney and heart tissue of an inbred strain of mice. The cytoplasmic isozyme was purified from kidney of DBA/2J mice by means of a four-step procedure which included affinity chromatography with an 8-(6-aminohexyl)-amino-NADP+-Sepharose column. The heart mitochondrial isozyme of DBA/2J mice was purified by a two-step procedure involving the use of 8-(6-aminohexyl)-amino-AMP-Sepharose and 8-(6-aminohexyl)-amino-NADP+-Sepharose columns. The specific activity of the homogeneous cytoplasmic and mitochondrial isozymes was 40 units/mg and 45 units/mg, respectively. Native and subunit molecular weights of these two isozymes were determined by chromatography on Sephadex G-100, G-150 and G-200 Superfine and polyacrylamide gel electrophoresis. Both isozymes were found to be dimers with the subunit molecular weight of approximatively 35,000. The sedimentation coefficients were determined to be 5.9 and 6.1 for the mitochondrial and cytoplasmic isozyme, respectively. The amino acid compositions of these two isozymes revealed distinct differences in arginine and proline contents. A modified procedure regarding the use of affinity columns for the purification of the weakly bound enzymes is also discussed.National Institute of Health Visiting Fellow.  相似文献   

8.
L S Lee  Y c Cheng 《Biochemistry》1976,15(17):3686-3690
Cytoplasmic and mitochondrial deoxythymidine kinase isozymes derived from the blast cells of acute myelocytic leukemia differ in their substrate specificity and kinetic behavior. These enzymes require divalent cations for their activity. The data suggest that the major role of idvalent cations is to chelate with ATP; the complex thus formed serves as the phosphate donor for the reaction. The activity of various triphosphate nucleosides as a phosphate donor for cytoplasmic deoxythymidine kinase is as follows: ATP = dATP greater than ara-ATP greater than GTP greater than CTP greater than dGTP = dCTP greater than dUTP, whereas for mitochondrial deoxythymidine kinase, the order of activity is ATP greater than CTP greater than UTP = dATP greater than ara-ATP greater than dGTP = dCTP greater than dUTP. Neither IdUTP nor dTTP could serve as a phosphate donor in the reaction catalyzed by either isozyme. From the many pyrimidine analogues tested for their binding affinity to each of these isozymes, I-dUrd and Br-dUrd had high good affinity which was equivalent to that of deoxythymidine. 5-Allyl-dUrd, 5-ethyl-dUrd, and 5-propyl-dUrd were only weakly bound to each isozyme. 5-I-dCyd, 5-Br-dCyd, dCyd, and 5-vinyl-dUrd were tightly bound to mitochondrial deoxythymidine kinase but not to the cytoplasmic isozyme. dTTP and I-dUTP are potent inhibitors of the reaction catalyzed by both isozymes. In contrast, dCTP and ara-CTP are potent inhibitors only of the mitochondrial isozyme, but not of the cytoplasmic isozyme. ATP-MG2+ acts as a sigmoidal substrate of the cytoplasmic isozyme with a"Km" of 0.22 mM, and as a regular substrate of the mitochondrial isozyme with a Km of 0.1 mM. Deoxythymidine acts as a regular substrate for both cytoplasmic and mitochondrial isozyme with a Km of 2.6 and 5.2 muM, respectively. Initial velocity as well as product inhibition studies suggest that the cytoplasmic isozyme catalyzes the reaction via a "sequential" mechanism. In contrast, mitochondrial deoxythymidine kinase catalyzes the reaction via a "ping-pong" mechanism.  相似文献   

9.
To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1. Similar Km values for substrates and cofactors in decarboxylation and carboxylation reactions were obtained for IDP2, suggesting a capacity for bidirectional catalysis in vivo. Concentrations of isocitrate and alpha-ketoglutarate measured in extracts from the parental strain were found to be similar with growth on different carbon sources. For mutant strains lacking IDP1, IDP2, and/or the mitochondrial NAD+-specific isocitrate dehydrogenase (IDH), metabolite measurements indicated that major cellular flux is through the IDH-catalyzed reaction in glucose-grown cells and through the IDP2-catalyzed reaction in cells grown with a nonfermentable carbon source (glycerol and lactate). A substantial cellular pool of alpha-ketoglutarate is attributed to IDH function during glucose growth, and to both IDP1 and IDH function during growth on glycerol/lactate. Complementation experiments using a strain lacking IDH demonstrated that overexpression of IDP1 partially compensated for the glutamate auxotrophy associated with loss of IDH. Collectively, these results suggest an ancillary role for IDP1 in cellular glutamate synthesis and a role for IDP2 in equilibrating and maintaining cellular levels of isocitrate and alpha-ketoglutarate.  相似文献   

10.
1. Effect of pH on liver lactate dehydrogenase (LDH) and its isozymes was examined in the goldfish acclimated to different temperatures and some purification of the LDH was attempted. 2. The optimal pH and the Km value at 30 degrees C of the enzyme were independent of acclimation temperature. 3. the optimal pH of isozyme was more basic in the order of LDH-1, LDH-2, LDH-3, LDH-4 and LDH-5. Km values of isozymes at 30 degrees C were higher in the order of LDH-1, LDH-3 and LDH-5. 4. There was no change in the enzyme activity during thermal acclimation.  相似文献   

11.
From normal rat liver mitochondrial and microsomal fractions, 4 distinct aldehyde dehydrogenase isozymes with millimolar substrate Km values have been purified and characterized. Two isozymes were isolated from mitochondria and 2 from microsomes. A mitochondrial aldehyde dehydrogenase with a substrate Km in the micromolar range was also identified. Subunit molecular weights for all millimolar Km isozymes is 54,000. The mitochondrial and microsomal millimolar Km isozymes are clearly distinguishable from each other by substrate and coenzyme specificity, pH velocity profiles, and thermal stability. By these same properties, the 2 isozymes from each organelle are virtually identical. The 2 mitochondrial isozymes can be distinguished by apparent molecular weight (I, 170,000; II, approximately 250,000), Km for NADP+, effect of inhibitors, and pI. The 2 microsomal isozymes are of the same apparent molecular weight (approximately 250,000), but are distinguishable by their Km values for benzaldehyde and NADP+, response to inhibitors, and pI.  相似文献   

12.
Two isozymes of 3-phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3), designated PGK-A and PGK-B, were purified from separate extracts of muscle and testicular tissue of DBA/2J mice, respectively. A similar procedure was used to purify the corresponding isozymes from C57BL/6J mice in order to make inter-strain comparisons. The purification involved the use of affinity chromatography with an 8-(6-aminohexyl)amino-ATP-Sepharose column and DEAE-Sephadex chromatography. Lactate dehydrogenase isozyme LDH-X was also co-purified from extract of mouse testes by this two-step procedure. The same isozyme isolated from either mouse strain was found to be identical in physical and biochemical properties. Both isozymes are monomeric as determined by gel filtration chromatography and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Furthermore, the isozymes have similar molecular weights, of 47 000 +/- 2000 and exhibit similar Km values for both coenzymes and substrate, as well as temperature dependence of enzyme activity. However, it was observed that the B isozyme is more labile than the A isozyme by denaturation at high temperature, urea and acidic pH.  相似文献   

13.
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes is broad and similar. With straight chain aliphatic aldehydes (C1-C6) the Km values of the E3 isozyme are identical with those of the E1 isozyme. All isozymes dehydrogenate naturally occurring aldehydes, 5-imidazoleacetaldehyde (histamine metabolite) and acrolein (product of beta-elimination of oxidized polyamines) with similar catalytic efficiency. Differences between the isozymes are in the Km values for aminoaldehydes. Although all isozymes can dehydrogenate gamma-aminobutyraldehyde, the Km value of the E3 isozyme is much lower: the same appears to apply to aldehyde metabolites of cadaverine, agmatine, spermidine, and spermine for which Km values range between 2-18 microM and kcat values between 0.8-1.9 mumol/min/mg. Thus, the E3 isozyme has properties which make it suitable for the metabolism of aminoaldehydes. The physiological role of E1 and E2 isozymes could be in dehydrogenation of aldehyde metabolites of monoamines such as 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde; the catalytic efficiency with these substrates is better with E1 and E2 isozymes than with E3 isozyme. Isoelectric focusing of liver homogenates followed by development with various physiological substrates together with substrate specificity data suggest that aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. Although the enzyme is generally considered to function in detoxication, our data suggest an additional function in metabolism of biogenic amines.  相似文献   

14.
Two alleles are encoded at the malate dehydrogenase locus in largemouth bass, Micropterus salmoides. Populations in the extreme northern areas of the range of this fish are fixed or nearly fixed for the B1 allele, whereas populations in Florida are fixed for the alternative allele, B2. The MDH-B1B1 and MDH-B2B2 allelic isozymes were isolated by preparative starch gel electrophoresis and subjected to in vitro kinetic analyses. The apparent Km (oxaloacetate) for each of these allelic isozymes was determined at 25, 30, and 35 degrees C. The Km values for both isozymes increased with increasing temperature and were not significantly different from each other at 25 and 35 degrees C. However, at 30 degrees C the Km value for the MDH-B1B1 allelic isozyme was higher than that for the MDH-B2B2 isozyme (i.e., 5.4 X 10(-5) vs 3.3 X 10(-5)). These results are consistent with the hypothesis that the different environmental temperatures at different latitudes may be at least partially responsible for the north-south cline in Mdh-B allele frequencies.  相似文献   

15.
A procedure for purifying human cytoplasmic and mitochondrial deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) was developed. Both purified isozymes have a similar molecular weight, activation energy and catalyze the reaction by a sequential mechanism. These two isozymes differ with respect to their substrate specificities. With cytoplasmic deoxycytidine kinase, ATP, GTP and TTP have the highest reaction velocity. Pyrimidine nucleoside triphosphates have higher affinity but lower V than purine nucleoside triphosphates. Cytidine and arabinosylcytidine can serve as substrates. With mitochondrial isozyme only ATP gives the highest reaction velocity. ATP and dATP have the same Km but different V values. Besides deoxycytidine, also deoxythymidine but not cytidine or arabinosylcytidine can serve as substrates. There are also differences between these two isozymes with respect to their sensitivity to inhibition. For cytoplasmic enzyme, Br5dCyd and Iodo5dCyd are not inhibitory. Both dCTP and UTP are competitive inhibitors (Ki 0.25 and 0.5 micronM, respectively) with respect to ATP. For mitochondrial isozyme both Br5dCyd and Iodo5dCyd are inhibitory and dCTP and TTP are competitive inhibitors (Ki 2 and 10 micronM, respectively) with respect to ATP.  相似文献   

16.
Kliachko OS  Ozerniuk ND 《Ontogenez》2001,32(5):374-376
We studied properties of lactate dehydrogenase isozymes expressed at different stages of Danio rerio ontogenesis. H4-LDH and a minor fraction H3M1 are expressed during embryonic development. The muscle isozyme (M4) appears after the beginning of muscle contractions in the embryo. H4 and M4 isozymes isolated from the heart and skeletal muscle of the adult fish, respectively, show significant differences in terms of Km, activation energy (AE), and inactivation temperature. H4-LDH isozymes isolated from unfertilized eggs, the skeletal muscle of larvae, and the heart of the adult fish differ in Km and activation energy, as well as in inactivation temperature. We propose that these differences may be associated with a ligand interacting with the H4 isozyme at different steps of ontogenesis.  相似文献   

17.
Normal tissues of DBA, CBA, CC57W, C3H, Balb/c, SHR mice and F1 hybrids CC57W/DBA appeared to differ in the ratios of mitochondrial and supernatant NADP-dependent isocitrate dehydrogenase (IDH). Tested inbred mice strains CC57W, C3H, SHR, Balb/c contain allelic form Idh-1a of supernatant IDH gene Idh-1, whereas allelic form Idh-1b is characteristic of mice strains DBA and CBA. In tumors IDH isozymes have the same mobility as do isozymes of homologous normal tissues; but their activity is lower. A high variability of each isozyme activity in the isozyme spectrum is revealed in various tissues of F1 hybrids CC57W/DBA. Allelic forms of gene Idh-1 were used as markers of normal and tumor cells for the experimental model: transplantation of sarcoma 37 (Idh-1a/Idh-1a) to subcutaneous tissue of the mouse strain DBA (Idh-1b/Idh-1b). It enables us to reveal isozymes of stromal cell in tumor IDH isozyme spectrum. The results indicate that the relation of normal and tumor isozymes vary in different tumors.  相似文献   

18.
NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) from Mycobacterium phlei ATCC 354 was purified to homogeneity by ammonium sulphate fractionation, followed by DEAE cellulose and Sephadex G-200 chromatography. The pH optimum of the enzyme was 8.5. The Km values for isocitrate and NADP were 74 and 53 microM, respectively. Mn2+ was essential for enzyme activity. The enzyme lost all activity on incubation at 70 degrees C for 15 min; isocitrate and NADP protected against this thermal inactivation. p-Chloromercuribenzoate inhibited the enzyme; pre-incubation of enzyme with isocitrate + Mn2+ prevented this inhibition. The purified enzyme showed concerted inhibition by glyoxylate + oxaloacetate and was inhibited by oxalomalate.  相似文献   

19.
In this study, we report cDNA sequences of the cytosolic NADP-dependent isocitrate dehydrogenase for humans, mice, and two species of voles (Microtus mexicanus and Microtus ochrogaster). Inferred amino acid sequences from these taxa display a high level of amino acid sequence conservation, comparable to that of myosin beta heavy chain, and share known structural features. A Caenorhabditis elegans enzyme that was previously identified as a protein similar to isocitrate dehydrogenase is most likely the NADP-dependent cytosolic isocitrate dehydrogenase enzyme equivalent, based on amino acid similarity to mammalian enzymes and phylogenetic analysis. We also suggest that NADP-dependent isocitrate dehydrogenases characterized from alfalfa, soybean, and eucalyptus are most likely cytosolic enzymes. The phylogenetic tree of various isocitrate dehydrogenases from eukaryotic sources revealed that independent gene duplications may have given rise to the cytosolic and mitochondrial forms of NADP-dependent isocitrate dehydrogenase in animals and fungi. There appears to be no statistical support for a hypothesis that the mitochondrial and cytosolic forms of the enzyme are orthologous in these groups. A possible scenario of the evolution of NADP-dependent isocitrate dehydrogenases is proposed.   相似文献   

20.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号