首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The ability to deform is an important feature of red blood cells (RBCs) for performing their function of oxygen delivery. Little is known about the hormonal regulation of RBC deformability. Here we report that human atrial natriuretic peptide (ANP) acts directly on human RBCs leading to the elevation of local bending fluctuations of the cell membrane. These changes are accompanied by an increase in the filterability of RBCs. These ANP effects were mimicked by cyclic GMP analogues, suggesting modulation of local membrane bending fluctuations and RBC filterability via a cyclic GMP-dependent pathway. The effect of ANP on the mechanical properties of RBCs suggests that ANP may increase the passage red blood cells through capillaries resulting in an improved oxygen delivery to the tissues.  相似文献   

2.
The proteomic analysis has showed that red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation changes. Exposure of red blood cells (RBCs) to some chemical compounds led to change in the RBC microrheological properties. When forskolin (10 microM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p < 0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p < 0.01). Red cell aggregation (RBCA) was significantly decreased under these conditions (p < 0.01). Markedly less changes of deformability was found after RBC incubation with protein kinase stimulator C (PKC)--phorbol 12-myristate 13-acetate (PMA). This drug reduced red cell aggregation only slightly. It was inhibited red cell tyrosine phosphotase activity by N-vanadat and was obtained a significant RBCD rise and RBCA lowering. The similar effect was found when cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor--lavendustin eliminated the above mention effects. On the whole the total data clearly show that the red cell aggregation and deformation changes were connected with an activation of the different intracellular signaling pathways.  相似文献   

3.
Intracellular signaling mechanisms in red blood cells (RBCs) involve various protein kinases and phosphatases and enable rapid adaptive responses to hypoxia, metabolic requirements, oxidative stress, or shear stress by regulating the physiological properties of the cell. Protein phosphorylation is a ubiquitous mechanism for intracellular signal transduction, volume regulation, and cytoskeletal organization in RBCs. Spectrin-based cytoskeleton connects integral membrane proteins, band 3 and glycophorin C to junctional proteins, ankyrin and Protein 4.1. Phosphorylation leads to a conformational change in the protein structure, weakening the interactions between proteins in the cytoskeletal network that confers a more flexible nature for the RBC membrane. The structural organization of the membrane and the cytoskeleton determines RBC deformability that allows cells to change their ability to deform under shear stress to pass through narrow capillaries. The shear stress sensing mechanisms and oxygenation-deoxygenation transitions regulate cell volume and mechanical properties of the membrane through the activation of ion transporters and specific phosphorylation events mediated by signal transduction. In this review, we summarize the roles of Protein kinase C, cAMP-Protein kinase A, cGMP-nitric oxide, RhoGTPase, and MAP/ERK pathways in the modulation of RBC deformability in both healthy and disease states. We emphasize that targeting signaling elements may be a therapeutic strategy for the treatment of hemoglobinopathies or channelopathies. We expect the present review will provide additional insights into RBC responses to shear stress and hypoxia via signaling mechanisms and shed light on the current and novel treatment options for pathophysiological conditions.  相似文献   

4.
The proteomic analysis has shown that the red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation alterations. The exposure of red blood cells (RBCs) to some chemical compounds has led to a change in the RBC microrheological properties. When forskolin (10 μM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator were added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p<0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p<0.01). The red cell aggregation (RBCA) was significantly decreased under these conditions (p<0.01). Markedly less changes of deformability were found after RBC incubation with protein kinase stimulator C (PKC)—phorbol 12-myristate 13-acetate (PMA). This drug reduced the red cell aggregation only slightly. The red cell tyrosine phosphotase activity was changed by N-vanadat and a significant RBCD rise and RBCA lowering were obtained. The similar effect was found when the cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor—lavendustin eliminated the above mentioned effects.  相似文献   

5.
Studies of red blood cells (RBCs) and RBC ghosts, using a quasi-elastic light scattering (QELS) microscope spectrometer, have identified the membrane as the primary source of the light scattering signal. This is the first report in which motion of the cell membrane has been demonstrated to be the primary source of the QELS signal from a cell. Cytoplasmic changes induced in the RBC by varying the osmotic strength of the medium were also detected using this technique. Comparison of the data from white blood cells (WBCs) with the RBC data demonstrated significant differences between different types of cells.  相似文献   

6.
The aim of this study was to estimate effects of some chemotherapy drugs on the elasticity and deformability of the membrane of a red blood cell (RBC). It was found that incubation of red blood cells (RBCs) with cisplatin or epoetin alpha led to considerable (by 10–17%; p < 0.05) increase in the RBC deformability and that cisplatin could activate tyrosine protein kinases (TPKs). Preincubation of RBCs with a specific inhibitor of EGF-R and Src kinase, lavendustin A, almost completely prevented the cisplatin effect. Tyrosine phosphatase inhibitor, sodium orthovanadate, increased the RBC deformability (p < 0.05). This effect was also abandoned by lavendustin A. To test a hypothesis on the involvement of protein kinases of mature RBCs in control of their membrane elasticity, the cells were incubated with phorbol 12-myristate 13-acetate (PMA) activating protein kinase Cα (PKCα). PMA increased the RBC deformability only moderately (by 8%, p < 0.05) and the effect was canceled by nonselective and selective PKC inhibitors staurosporin and 4-(1-methylindol-3-yl)maleimide hydrochloride. Erythropoietin is known to inhibit the nonselective cation channels of the RBC membrane; however, preincubation of the cells with verapamil did not cancel the increase in their deformability. Hence, this increase in deformability could be a result of the action of tyrosine protein kinases, the more so that this effect was almost completely canceled by lavendustion A. The results suggest that the presence of functionally active protein kinases and phosphatases in the membranes of mature RBC makes them a target for the addressed effects of signal molecules, including some chemotherapy drugs, causing consecutive alterations in the RBC membrane elasticity, microrheological properties, and transport potential.  相似文献   

7.

Background

Red blood cells (RBCs) deform significantly and repeatedly when passing through narrow capillaries and delivering dioxygen throughout the body. Deformability of RBCs is a key characteristic, largely governed by the mechanical properties of the cell membrane. This study investigated RBC mechanical properties using atomic force microscopy (AFM) with the aim to develop a coarse-grained particle method model to study for the first time RBC indentation in both 2D and 3D. This new model has the potential to be applied to further investigate the local deformability of RBCs, with accurate control over adhesion, probe geometry and position of applied force.

Results

The model considers the linear stretch capacity of the cytoskeleton, bending resistance and areal incompressibility of the bilayer, and volumetric incompressibility of the internal fluid. The model’s performance was validated against force–deformation experiments performed on RBCs under spherical AFM indentation. The model was then used to investigate the mechanisms which absorbed energy through the indentation stroke, and the impact of varying stiffness coefficients on the measured deformability. This study found the membrane’s bending stiffness was most influential in controlling RBC physical behaviour for indentations of up to 200 nm.

Conclusions

As the bilayer provides bending resistance, this infers that structural changes within the bilayer are responsible for the deformability changes experienced by deteriorating RBCs. The numerical model presented here established a foundation for future investigations into changes within the membrane that cause differences in stiffness between healthy and deteriorating RBCs, which have already been measured experimentally with AFM.
  相似文献   

8.
Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.  相似文献   

9.
The effect of lipopolysaccharide (LPS, endotoxin), isolated from Proteus mirabilis S1959 strain, on red blood cell (RBC) membranes in whole cells as well as on isolated membranes was studied. Lipid membrane fluidity, conformational state of membrane proteins and the osmotic fragility of RBCs were examined using electron paramagnetic resonance spectroscopy and spectrophotometric method. Lipid membrane fluidity was determined using three spin-labeled fatty acids: 5-, 12- and 16-doxylstearic acid (5-, 12- and 16-DS). The addition of LPS S1959 to RBC suspension resulted in an increase in membrane fluidity, as indicated by 12-DS. At the concentrations of 0.5 and 1 mg/ml, LPS treatment led to a significant (P<0.05) increase in lipid membrane fluidity in the deeper region of lipid bilayer (determined by 12-DS). The conformational changes in membrane proteins were determined using two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The highest concentration of endotoxin significantly (P<0.05) decreased the relative rotational correlation time of ISL and significantly (P<0.05) increased the osmotic fragility of RBCs. The effect of endotoxin was much more profound in isolated membranes than in intact cells treated with LPS. At the concentrations 0.5 and 1 mg/ml, LPS led to a significant increase in h(w)/h(s) ratio. These results indicated increased membrane protein mobility, mainly in the spectrin-actin complex in membrane cytoskeleton. These data suggest that LPS-induced alterations in membrane lipids and cytoskeleton proteins of RBCs lead to loss of membrane integrity.  相似文献   

10.
To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.  相似文献   

11.
We review recent theoretical work that analyzes experimental measurements of the shape and fluctuations of red blood cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the situation of elastic cells with that of fluid-filled vesicles. In red blood cells (RBCs), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wave vector and frequency dependence of the fluctuation spectrum of RBCs indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect the transient defects induced in the cytoskeleton network by ATP.  相似文献   

12.
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.  相似文献   

13.
Free radicals and oxidative damage play important roles in aging and many degenerative disorders such as cancer, cardiovascular disease, and Alzheimer disease. Antioxidants can alleviate some of the harmful effects of oxidative damage. In this report, we describe that we have been using human red blood cells (RBCs) as a model system to delineate the effects of oxidative damage on human cells, particularly on glucose-6-phosphate dehydrogenase (G6PD)-deficient human RBCs. By using a monolayer technique, we found that oxidative denaturation of hemoglobin leads to the release of hemin into the RBC membrane and the released hemin is capable of oxidizing membrane proteins via a thiyl radical intermediate as detected by the electron spin resonance technique. By using a Laser Viscodiffractometer (Vidometer) to measure RBC deformability, we found that the deformability of G6PD-deficient RBCs was drastically reduced by hydroxyl radicals. Perhaps as a consequence of enhanced susceptibility to oxidative stress, G6PD-deficient individuals have lower antioxidant levels, particularly vitamin C, than normal individuals. Interestingly, we have also found that RBC deformability could be affected by two environmental pollutants, namely, platinum and palladium, which can enhance hydroxyl radical formation in the presence of hydrogen peroxide and ferrous ion (Fenton reaction).  相似文献   

14.
Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.  相似文献   

15.
The ability of red blood cells (RBCs) for the reversible change of their shape under passing through capillaries in microcirculation mainly depends on membrane elasticity of these cells. Phosphorylation of some membrane proteins can result in the changes of microrheological red blood cell properties. Here we show a significant increase in RBC deformability (RBCD) after incubation with isoproterenol (10−6 M). Red blood cell aggregation (RBCA) decreased under these conditions only slightly. When forskolin (10 μM), an adenylyl cyclase (AC) stimulator, was added to the RBC suspension, RBCD increased significantly (p < 0.05). Some more changes of deformability were found after incubation of RBC with stable penetrating analog of cyclic adenosine phosphate (cAMP), dibutyryl-cAMP, (dB-cAMP, 50 μM) and after phosphodiesterase (PDE) activity inhibition with Vinpocetine, Rolipram, or IBMX. It was found that Gs-proteins inhibitor Clonidine and specific Gi-protein stimulator Mastaparan 7 increased both RBCD and RBCA. On the whole, the data clearly show that the RBC aggregation and deformation changes are related with activation of the different intracellular signaling pathways. We suppose that RBCD increase was mainly associated with activation of the adenylyl-cyclase-cAMP system.  相似文献   

16.

Background

Nitric oxide (NO) produced by nitric oxide synthase (NOS) in human red blood cells (RBCs) was shown to depend on shear stress and to exhibit important biological functions, such as inhibition of platelet activation. In the present study we hypothesized that exercise-induced shear stress stimulates RBC-NOS activation pathways, NO signaling, and deformability of human RBCs.

Methods/Findings

Fifteen male subjects conducted an exercise test with venous blood sampling before and after running on a treadmill for 1 hour. Immunohistochemical staining as well as western blot analysis were used to determine phosphorylation and thus activation of Akt kinase and RBC-NOS as well as accumulation of cyclic guanylyl monophosphate (cGMP) induced by the intervention. The data revealed that activation of NO upstream located enzyme Akt kinase was significantly increased after the test. Phosphorylation of RBC-NOSSer1177 was also significantly increased after exercise, indicating activation of RBC-NOS through Akt kinase. Total detectable RBC-NOS content and phosphorylation of RBC-NOSThr495 were not affected by the intervention. NO production by RBCs, determined by DAF fluorometry, and RBC deformability, measured via laser-assisted-optical-rotational red cell analyzer, were also significantly increased after the exercise test. The content of the NO downstream signaling molecule cGMP increased after the test. Pharmacological inhibition of phosphatidylinositol 3 (PI3)-kinase/Akt kinase pathway led to a decrease in RBC-NOS activation, NO production and RBC deformability.

Conclusion/Significance

This human in vivo study first-time provides strong evidence that exercise-induced shear stress stimuli activate RBC-NOS via the PI3-kinase/Akt kinase pathway. Actively RBC-NOS-produced NO in human RBCs is critical to maintain RBC deformability. Our data gain insights into human RBC-NOS regulation by exercise and, therefore, will stimulate new therapeutic exercise-based approaches for patients with microvascular disorders.  相似文献   

17.
K G Engstr?m 《Biorheology》1989,26(4):711-721
A new filtration device and blood handling technique for the assessment of RBC deformability in small blood samples is described and used to study RBC deformability in adult obese-hyperglycemic ob/ob-mice and normoglycemic controls. The new filtration device was designed to improve the time resolution during RBC incubation. Test and control RBC suspensions were directly filtered from two identical incubation chambers under a constant pressure of 1200 Pa. Nuclepore filters (3 microns) were mounted on top of several standard test tubes into which the filtrate was subsequently collected and weighed. Because the RBCs were resuspended to a very low (0.01%) hematocrit, the average number of RBCs passing each pore was less than 10. Therefore, any detectable difference must reflect the physical properties of RBCs, e.g. shape or viscoelasticity, whereas the role of white blood cells is negligible. When ob/ob-mouse RBCs were studied with the new technique they showed impaired filtrability as compared with control RBCs, both when incubated without glucose and with glucose present at the same concentration as that recorded in the RBC donating mouse.  相似文献   

18.
A new system has been developed for determining the deformability of individual red blood cells (RBCs), simulating the passage of RBCs in capillaries. The kernel of this system was the micropore array filter with an accurately defined pattern made by semiconductor microprocessing techniques. Individual microscopic RBC images were processed in parallel through a microcomputer and its interfacing circuit. An experiment with a normal RBC from a human donor demonstrated that it could pass the circular pore filter with a diameter as small as 1.0 μm at 2 cm H2O pressure difference. Deformability of RBCs treated with diamide or acetylphenylhidralazine was also measured, showing that the system was sufficiently sensitive to detect the deformability loss due to membrane damage or to polymerization of the cytoplasma.  相似文献   

19.
Reductions in red blood cell membrane deformability (RBC(D)) may perturb microcirculatory blood flow and impair tissue O(2)-availability. We investigated the effect of assay temperature on the distribution of RBC(D) in endotoxin (LPS) incubated and control RBCs. Fresh blood from healthy rats was incubated with and without the presence of LPS for 6 hrs. An index of red blood cell membrane deformability, delta, was measured via the micropipette aspiration technique at 25 degrees C and 37 degrees C at 0, 2 and 6 hrs of incubation. The ATP content of RBC was measured by the luciferin-luciferase technique. At 25 degrees C, LPS caused a significant decrease in mean delta after 2 and 6 hours incubation compared to controls (-10.0%, p=0.03 and -24.0%, p=0.03, respectively) characterized by a left shift in the distribution (skewness: -1.4). However, at 37 degrees C a significant decrease in delta was only detected after 6 hrs of LPS incubation (-13.8%, p=0.01, compared to -5.1%, p=0.7 at 2 hours) and lacked the left shifted distribution (skewness: 0.2). No significant difference in ATP content of RBCs was observed between groups. We have shown that LPS incubation results in a significant decrease in RBC(D) and that room temperature measurement of physical membrane properties may exaggerate the differences between normal and perturbed RBCs.  相似文献   

20.
Low frequency submicron fluctuations of the cell membrane were recently shown to be characteristic for different cell types, nevertheless their physiological role is yet unknown. Point dark-field microscopy based recordings of these local displacements of cell membrane in human erythrocytes, subjected to cyclic oxygenation and deoxygenation, reveals a reversible decrease of displacement amplitudes from 290 +/- 49 to 160 +/- 32 nm, respectively. A higher rate of RBC adhesion to a glass substratum is observed upon deoxygenation, probably due to a low level of fluctuation amplitudes. The variation in the amplitude of these displacements were reconstituted in open RBC ghosts by perfusing them with composite solutions of 2,3 diphosphoglycerate, Mg+2, and MgATP, which mimic the intracellular metabolite concentrations in oxygenated and deoxygenated erythrocytes. The mere change in intracellular Mg+2 during oxygenation-deoxygenation cycle is sufficient to explain these findings. The results imply that the magnitude of fluctuations amplitude is directly connected with cell deformability. This study suggests that the physiological cycle of oxygenation-deoxygenation provides a dynamic control of the bending deformability and adhesiveness characteristics of the RBC via a Mg+2-dependent reversible assembly of membrane-skeleton proteins. The existing coupling between oxygenation-deoxygenation of the RBC and its mechanical properties is expected to play a key role in blood microcirculation and may constitute an example of a general situation for other circulating blood cells, where the metabolic control of cytoskeleton dynamics may modulate their dynamic mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号