首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypertrehalosemic hormones, HTH-I and HTH-II, activate trehalose synthesis and increase the rate of sugar efflux from Periplaneta americana fat body in vitro. These processes are unaffected by the diacylglycerol, 1-oleyl-2-acetyl-sn-glycerol, an activator of protein kinase C. Similarly, H-7 and spingosine, inhibitors of protein kinase C, are also inactive against trehalose efflux. The possibility that diacylglycerol lipase might generate an active fatty acid species was ruled out because of the failure of the inhibitor RHC-80267 to inhibit trehalose efflux. Activation of trehalose efflux from the intact fat body by HTH-I was strongly inhibited in a concentration dependent manner by the cyclooxygenase inhibitors indomethacin and diclofenac, but not by acetylsalicylic acid. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, also blocked HTH-I activated trehalose efflux in a concentration dependent fashion. The phospholipase A(2) inhibitors mepacrine and 4'-bromophenacyl bromide were also effective in decreasing the efflux of trehalose from HTH-I challenged fat body. The data suggest possible roles for arachidonic acid metabolites in the regulation of trehalose synthesis and in the efflux of the sugar from the fat body.  相似文献   

2.
《Insect Biochemistry》1991,21(4):375-380
Inclusion of glucose or trehalose in the medium during the incubation of locust fat body in vitro leads to a reduction of the relative amount of active (AMP-independent) glycogen phosphorylase. The presence of adipokinetic hormone (AKH I) results in a rapid activation of phosphorylase, reaching a maximum within 5 min. This AKH effect is highly dependent on added Ca2+, and requires ⩾ 1 mM Ca2+ for maximal enzyme activation. Ca2+ alone has no effect on phosphorylase activity, but it does activate the enzyme when the ionophore A23187 is also included in the medium. In a cell-free system from locust fat body the activation of endogenous phosphorylase by phosphorylase kinase is stimulated by Ca2+. Activity of the latter enzyme can be increased further by high doses of calmodulin. Both in the presence and in the absence of external calmodulin, the calmodulin antagonist trifluoperazine has an inhibitory effect on phosphorylase kinase. Results are discussed in relation to the possible mechanisms underlying hormonal control of glycogenolysis.  相似文献   

3.
Incubation of trophocytes from dissaggregated fat body of Periplaneta americana with either of the hypertrehalosemic hormones, HTH-I or HTH-II, leads to an increase in the cytosolic concentration of Ca(2+) from approximately 80 to approximately 310nM with a rise time of approximately 110s. The Ca(2+) concentration then declines to the resting level during the ensuing 5min. In the absence of extracellular Ca(2+) the increase in [Ca(2+)](i) due to HTH is limited to approximately 100nM. The calmodulin inhibitors calmidazolium and W-7 also limit to a similar degree the ability of HTH to increase [Ca(2+)](i). Phorbol 12-myristate 13-acetate, an activator of protein kinase C, was shown to block Ca(2+) entry through the plasma membrane. Additional evidence to support the view that HTH enhances Ca(2+) influx has been obtained by measuring the quenching of fura-2 fluorescence when Ca(2+) is replaced with Mn(2+).  相似文献   

4.
Phospholipase A2 (PLA2) associated with the membrane fraction of trophocytes from Periplaneta americana fat body increases by as much as 100% when the cells are incubated with hypertrehalosemic hormone (HTH-II). Activation with HTH-II is approximately halved by inclusion of the PKC inhibitor sphingosine in the incubation medium. Because activation of PLA2 by HTH-II is blocked by the GDP analogue GDP-β-S, and the unactivated enzyme is activated by the GTP analogue GTP-γ-S it is likely that a G protein is involved in activation of the enzyme. Activation of PLA2 was also achieved by treating the trophocytes with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol in the presence of thapsigargin. This supports the view that protein kinase C is also involved in the activation process.  相似文献   

5.
The interaction of rabbit muscle phosphorylase kinase (EC 2.7.1.38) with human erythrocyte membranes was investigated. It was found that at pH 7.0 the kinase binds to the inner face of the erythrocyte membrane (inside-out vesicles) and that this binding is Ca2+- and Mg2+-dependent. The sharpest increase in the binding reaction occurs at concentrations between 70 and 550 nM free Ca2+. Erythrocyte ghost or right-side out erythrocyte vesicles showed a significantly lower capacity to interact with phosphorylase kinase. Autophosphorylated phosphorylase kinase shows a similar Ca2+-dependent binding profile, while trypsin activation of the kinase and calmodulin decrease the original binding capacity by about 50%. Heparin (200 micrograms/ml) and high ionic strength (50 mM NaCl) almost completely blocks enzyme-membrane interaction; glycogen does not affect the interaction.  相似文献   

6.
Pretreatment of adrenal chromaffin cells with protein kinase C activators, i.e. 12-O-tetradecanoyl phorbol-13-acetate (TPA) and 1-oleoyl 2-acetyl glycerol (OAG), partially inhibited carbamylcholine (CCh)-induced rise in intracellular free Ca2+ concentration ([Ca2+]i). The apparent IC50 values of TPA and OAG were 3 nM and 25 microM, respectively. The effect of TPA on the CCh-induced rise in [Ca2+]i was overcome by pretreatment of the cells with a protein kinase C inhibitor, 1-(5-isoquinidinesulfonyl)-2-methylpiperazine hydrochloride (H-7). In contrast, KCl-induced rise in [Ca2+]i was not affected by pretreating the cells with TPA or OAG. An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate failed to affect the CCh-induced rise in [Ca2+]i. CCh-induced 45Ca2+ uptake was also partially inhibited by pretreatment of the cells with TPA or OAG, but KCl-induced 45Ca2+ uptake was not affected by these pretreatments. These results indicate that protein kinase C activation causes an uncoupling of signal transduction between the nicotinic receptors and Ca2+ channels.  相似文献   

7.
The effects of calcium, calmodulin, protein kinase C (PKC) and protein tyrosine kinase (PTK) modulators were examined on the volume-activated taurine efflux in the erythroleukemia cell line K562. Exposure to hypoosmotic solution significantly increased taurine efflux and intracellular calcium concentration ([Ca2+]i). The Ca2+ channel blockers La3+ (1 mM), verapamil (200 microM) and nifedipine (100 microM) inhibited the hypoosmotically-induced [Ca2+]i increase by more than 90%, while the volume-activated taurine efflux was inhibited by 61.3 +/- 9.5, 74.1 +/- 9.3 and 38.0 +/- 1.5%, respectively. Furthermore, the calmodulin inhibitors W7 (50 microM) and trifluoperazine (10 microM) and the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 (2 microM) significantly blocked the volume-activated taurine efflux by 93.4 +/- 2.7, 77.9 +/- 3.5 and 61.3 +/- 15.8%, respectively. In contrast, the PKC inhibitor staurosporine (200 nM) or the PKC activator phorbol 12-myristate 13-acetate (100 nM) did not have significant effects on the volume-activated taurine efflux. However, pretreatment with PTK inhibitors genistein, tyrphostin A25, and tyrphostin A47 blocked the volume-activated taurine efflux. These results suggest that the volume-activated taurine efflux in K562 cells may not directly involve Ca2+, but may require the presence of calmodulin and/or PTK.  相似文献   

8.
The effects of protein kinase C (PKC) activation and inhibition on the inositol 1,4,5-trisphosphate (IP3) and cytosolic Ca2+ ([Ca2+]i) responses of rat submandibular acinar cells were investigated. IP3 formation in response to acetylcholine (ACh) was not affected by the PKC activator phorbol 12-myristate 13-acetate (PMA), nor by the PKC inhibitor calphostin C (CaC). The ACh-elicited initial increase in [Ca2+]i in the absence of extracellular Ca2+ was not changed by short-term (0.5 min) exposure to PMA, but significantly reduced by long-term (30 min) exposure to PMA, and also by pre-exposure to the PKC inhibitors CaC and chelerythrine chloride (ChC). After ACh stimulation, subsequent exposure to ionomycin caused a significantly (258%) larger [Ca2+]i increase in CaC-treated cells than in control cells. However, pre-exposure to CaC for 30 min did not alter the Ca2+ release induced by ionomycin alone. These results suggest that the reduction of the initial [Ca2+]i increase is due to an inhibition of the Ca2+ release mechanism and not to store shrinkage. The thapsigargin (TG)-induced increase in [Ca2+]i was significantly reduced by short-term (0.5 min), but not by long-term (30 min) exposure to PMA, nor by pre-exposure to ChC or CaC. Subsequent exposure to ionomycin after TG resulted in a significantly (70%) larger [Ca2+]i increase in PMA-treated cells than in control cells, suggesting that activation of PKC slows down the Ca2+ efflux or passive leak seen in the presence of TG. Taken together, these results indicate that inhibition of PKC reduces the IP3-induced Ca2+ release and activation of PKC reduces the Ca2+ efflux seen after inhibition of the endoplasmic Ca2+-ATPase in submandibular acinar cells.  相似文献   

9.
Recently, synthetic HTH-I and HTH-II have been shown to increase the formation of free fatty acids in cockroach (Periplaneta americana) fat body. In this study we show that HTH-II increases PLA(2) activity in dispersed trophocytes, thus implying that phospholipid is a potential source of the fatty acids. The increase in HTH-induced PLA(2) activity is triggered by an increase in [Ca(2+)](i) but extracellular Ca(2+) is also required for a maximal Ca(2+) signal: an effect that can be blocked by the introduction of BAPTA into the trophocytes. Treating trophocytes with ryanodine blocks the increase in PLA(2) activity that follows treatment of the cells with HTH-II. This indicates that the Ca(2+) release channels are distinct from those that respond to inositol trisphosphate. Thapsigargin, which releases Ca(2+) to the cytosol from an intracellular store, increases PLA(2) activity. The data show that the enzyme is translocated from the cytosol to the plasma membrane.  相似文献   

10.
To elucidate possible functions of elevation of endogenous diacylglycerol induced by thyrotropin-releasing hormone in pituitary cells, we have studied the actions of two synthetic diacylglycerols, sn-1-oleoyl-2-acetylglycerol (OAG) and sn-1,2-dioctanoylglycerol (DiC8), on cytosolic free calcium concentration ([Ca2+]i) in GH4C1 cells. OAG induced an immediate increase in [Ca2+]i which gradually reached a peak that was twice the basal level after the first min; [Ca2+]i then returned to remain at basal level after 3 min. The increase in [Ca2+]i was dependent on the concentration of OAG added with two apparent potencies; half-maximal actions on [Ca2+]i were observed at 70 nM and greater than 20 microM. The increase in [Ca2+]i induced by OAG was blocked completely by chelating extracellular calcium, or by pretreatment with calcium channel blockers. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate, which itself induces a rise in [Ca2+]i in these cells that is similar in time course, magnitude, and drug sensitivity to that of OAG, blocked completely the actions of subsequent exposure to OAG. Analogous results were obtained using DiC8, although DiC8 induced a transient inhibition to 75% of basal levels of [Ca2+]i after the initial increase in [Ca2+]i, and DiC8 was less potent than OAG. These data indicated that diacylglycerols induce influx of extracellular calcium in these cells, possibly by activation of voltage-dependent Ca2+ channels. Furthermore, diacylglycerols and phorbol esters appear to utilize a common pathway in eliciting these actions on [Ca2+]i, possibly involving activation of a protein kinase C. These actions of diacylglycerol provide a pathway by which thyrotropin-releasing hormone may act to enhance calcium channel activity.  相似文献   

11.
Human fibroblasts in culture will grow in serum-free medium containing serum replacement factors, but without protein growth factors, as long as the Ca2+ level is 1.0-2.0 mM. When the Ca2+ is reduced to 0.1 mM, the cells stop cycling, but they can be reinduced to cycle by raising the Ca2+ level to 1.0 mM Ca2+ or to higher concentrations that result in activation of mitogen-activated protein kinase (MAPK). We now report that exposure of human fibroblasts to extracellular Ca2+ increased the level of inositol (1,4,5)-trisphosphate in the cytoplasm and caused a transient rise in the concentration of intracellular free Ca2+. Ca2+-induced MAPK activation was partly abolished by treatment of the cells with pertussis toxin. It was also decreased by treatment of cells with thapsigargin, which depletes intracellular Ca2+ stores; with phorbol 12-myristyl 13-acetate (PMA), which down-regulates protein kinase C (PKC); with the calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide HCl (W-7), and calmidazolium (24571); as well as with lanthanum, a Ca2+ channel inhibitor. Ca2+ stimulation did not result in phosphorylation of the c-raf-1 protein. Our results suggest that extracellular Ca2+ stimulates MAPK activation through a pathway(s) involving a pertussis toxin-sensitive G protein, phospholipase C, intracellular free Ca2+, calmodulin, and PKC.  相似文献   

12.
Calmodulin from phosphorylase kinase (the delta subunit) was obtained as a homogeneous protein in a spectroscopically pure form, and its interaction with Ca2+ and Mg2+ was studied. 1. Determination of the binding of Ca2+ to calmodulin in a buffer of low ionic strength (0.001 M) show that it contained six binding sites for this divalent cation. 2. Employment of a buffer of high ionic strength (0.18 M) allowed two Ca2+/Mg2+-binding sites (KdCa2+ = 4.0 microM), which showed Ca2+ - Mg2+ competition (KdMg2+ = 0.75 mM), to be distinguished from two Ca2+-specific binding sites (KdCa2+ = 40 microM). The remaining two Ca2+-binding sites are not observed under these conditions and are probably Mg2+-specific binding sites. Thus, the binding sites on calmodulin are remarkably similar to those of the homologous Ca2+-binding protein, troponin C [Potter and Gergely (1975) J. Biol. Chem. 250, 4628, 4633]. 3. The conformational states of calmodulin are defined by Ca2+, Mg2+ and salt concentrations, which can be differentiated by their Ca2+ affinity and their relative tyrosine fluorescence intensity. In a buffer of high ionic strength, Mg2+ induces a conformation which enhances the apparent affinity for Ca2+. Addition of Ca2+ leads to an enhancement of the tyrosine fluorescence intensity, which remains enhanced even upon removal of Ca2+ by chelation with EGTA. Only additional chelation of Mg2+ with EDTA reduces the tyrosine fluorescence intensity. 4. Comparison of the Ca2+-binding parameters of phosphorylase kinase, which were previously determined under identical experimental conditions [Kilimann and Heilmeyer (1977) Eur. J. Biochem. 73, 191-197], with those reported here on calmodulin isolated from this enzyme, allows the conclusion that Ca2+ binding to the holoenzyme occurs by binding to the delta subunit exclusively. 5. Ca2+ binding and Ca2+ activation of phosphorylase kinase are compared and discussed in relation to the Ca2+ and Mg2+-induced conformation changes of calmodulin.  相似文献   

13.
Red and white avian skeletal muscles (chicken and pigeon) contain the same alpha'-isoenzyme of phosphorylase kinase. According to data from gradient polyacrylamide slab electrophoresis in the presence of SDS, the molecular masses of beta- and gamma-subunits of phosphorylase kinase from rabbit, chicken and pigeon muscles are not identical. Electron microscopy data suggest that the quaternary structure of chicken and pigeon phosphorylase kinase is of the same type. The alpha'-isozyme of chicken and pigeon phosphorylase kinase is strongly activated by calmodulin and troponin C. Avian phosphorylase kinase is activated 2--3-fold by phosphorylation with cAMP-dependent protein kinase and by autophosphorylation. This activation is associated with the phosphorylation of both alpha'- and beta-subunits. The affinity of pigeon phosphorylase kinase a for Ca2+ is 20 times as high as that of phosphorylase kinase b.  相似文献   

14.
This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.  相似文献   

15.
Arachidonic acid activates Ca2+ extrusion in macrophages   总被引:2,自引:0,他引:2  
Stimulation of macrophages with platelet-activating factor (PAF) elicits an increase of intracellular calcium concentration, Ca2+i, which was monitored here at the single cell level with the calcium-sensitive dye Fura-2. The sustained component of this Ca2+i increase reflects the dynamic balance achieved between enhanced Ca2+ influx and efflux. In macrophages where a steady increase of Ca2+i has been evoked by 50 nM thapsigargin (a molecule known to empty Ca2+ stores and elevate Ca2+i in various cell types), PAF activates Ca2+ efflux, without causing a preceding increase in Ca2+i. This result shows that in this case, Ca2+ extrusion is not merely a consequence of a Ca2+i increase. PAF-evoked Ca2+ extrusion does not result from the activation of the Na+/Ca2+ exchanger. Exogenous arachidonic acid (10-100 microM) elicits Ca2+ efflux in macrophages where Ca2+i has been previously elevated by either PAF or thapsigargin. PAF-induced Ca2+ extrusion is blocked by 4-bromophenacylbromide, an inhibitor of arachidonic acid production by phospholipase A2. Together, these results suggest that arachidonic acid, which is produced in PAF-stimulated macrophages, contributes to the regulation of a Ca2+ extrusion system, which is presumably a Ca2(+)-ATPase.  相似文献   

16.
The role of calcium in the mediation of the hypertrehalosaemic signal of the endogenous neuropeptide Mem-CC was investigated in vitro and in vivo in the cetoniid beetle Pachnoda sinuata. The presence of Mem-CC increases the influx of extracellular 45Ca(2+) into the fat body as well as the efflux of 45Ca(2+) from pre-loaded fat body into the incubation medium. Extracellular calcium is essential to exert maximal activation of the fat body glycogen phosphorylase by saturating doses of Mem-CC (0.3 nM). This effect of extracellular Ca(2+) is dose-dependent: maximal activation of glycogen phosphorylase by Mem-CC is achieved at calcium concentrations of approximately 1.2 mM and the ED(50) was calculated to be 0.6 mM. Both, thimerosal and thapsigargin caused a stimulation of carbohydrate metabolism in the fat body, suggesting that a release of calcium from the endoplasmic reticulum is involved in this process. However, neither entry of extracellular calcium nor the release from the endoplasmic reticulum are sufficient alone for a full activation of the phosphorylase. The results of the present study suggest that calcium from extracellular as well as from intracellular sources is part of the second messenger system for the transduction of the hypertrehalosaemic signal of Mem-CC in the fat body of P. sinuata.  相似文献   

17.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

18.
Addition of 10 micron of the alpha-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3',5'-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 micron phentolamine and were absent in cells incubated at pH 7.4. The same unexplained dependency of extracellular pH was observed with 2.5 nM--2.5 micron glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase. The effects of 5 micron isoproterenol or 5 micron epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 micron propranolol, whereas 10 micron phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The beta-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase. Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP dependent protein kinase also being active in this phosphorylation.  相似文献   

19.
The role of internal stores and plasma membrane Ca2+ pumps in controlling [Ca2+]i during agonist stimulation and their regulation by agonists are not well understood. We report here measurements of intracellular ([Ca2+]i) and extracellular ([Ca2+]o) Ca2+ concentrations in agonist-stimulated pancreatic acini in an effort to directly address these questions. Stimulation of acini suspended in Ca(2+)-free or Ca(2+)-containing medium with Ca2+ mobilizing agonists resulted in a typical transient increase in [Ca2+]i. Thapsigargin, a specific inhibitor of internal Ca2+ pumps, inhibited the rate of [Ca2+]i reduction after agonist stimulation by approximately 40%. Under the same conditions, thapsigargin had no effect on the rate of the unidirectional Ca2+ efflux across the plasma membrane as revealed by measurements of [Ca2+]o. These findings suggest that internal Ca2+ pumps actively remove Ca2+ from the cytosol during continued agonist stimulation. The correlation between the reduction in [Ca2+]i and the increase in [Ca2+]o showed that Ca2+ efflux from cells stimulated with agonist and thapsigargin represent Ca2+ efflux across the plasma membrane. Inhibition of cells exposed to agonist and thapsigargin with a specific antagonist sharply reduced the rates of the [Ca2+]i decrease and the accompanied [Ca2+]o increase. Hence, at comparable [Ca2+]i, Ca2+ efflux from stimulated cells was about 3-fold faster than that from resting cells, indicating that agonists directly activate the plasma membrane Ca2+ pump. To study the role of [Ca2+]i increase in plasma membrane Ca2+ pump activation the acini were loaded with 1,2-bis-(2-aminophenoxyethane-N,N,N',N')-tetraacetic acid (BAPTA), and [Ca2+]o was measured during agonist stimulation. Surprisingly, although BAPTA completely prevented the increase in [Ca2+]i, Ca2+ efflux rate was reduced by only 34%. These findings provide the first evidence for Ca(2+)-independent activation of the plasma membrane Ca2+ pump by Ca2+ mobilizing agonists.  相似文献   

20.
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号