首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND INFORMATION: Most AQPs (aquaporins) function at the plasma membrane, however AQP6 is exclusively localized to membranes of intracellular vesicles in acid-secreting type-A intercalated cells of renal collecting ducts. The intracellular distribution indicates that AQP6 has a function distinct from trans-epithelial water movement. RESULTS: We show by mutational analyses and immunofluorescence that the N-terminus of AQP6 is a determinant for its intracellular localization. Presence or absence at the plasma membrane of AQP6 constructs was confirmed by electrophysiological methods. Addition of a GFP (green fluorescent protein) or a HA (haemagglutinin) epitope tag (GFP-AQP6 or HA-AQP6) to the N-terminus of AQP6, directed AQP6 to the plasma membranes of transfected Madin-Darby canine kidney cells. In contrast, addition of a GFP tag to the C-terminus (AQP6-GFP) caused the protein to remain intracellular, similar to untagged wild-type AQP6. Replacement of the N-terminus of AQP6 by that of AQP1 also directed AQP6 to the plasma membranes, whereas the N-terminus of AQP6 retained AQP1 in cytosolic sites. CONCLUSION: Our results suggest that the N-terminus of AQP6 is critical for trafficking of the protein to the intracellular sites. Moreover, our studies provide an approach for future identification of proteins involved in vesicle sorting in the acid-secreting type-A intercalated cells.  相似文献   

2.
Localization of aquaporin (AQP) water channels to either apical or basolateral membranes is important for various epithelial functions. We have established MDCK-II cell transfectants stably expressing AQP5 (RW5 cells) or AQP8 (RW8 cells). The expression of both AQPs was confirmed by the results of immunofluorescence microscopy and immunoblot analysis. When grown on polycarbonate filters, osmotically-obliged transepithelial water flow across RW5 and RW8 monolayers was approximately 3-fold greater than that occurring across a monolayer of the parental cell line. Importantly, results of confocal immunofluorescence microscopy studies showed that AQP5 sorted to the apical membranes of RW5 cells. In contrast, AQP8 sorted to the basolateral membranes of RW8 cells. This is the first report of (i) stable epithelial cell cultures exhibiting a functional, polarized distribution of AQPs 5 and 8, and (ii) a basolateral localization of AQP8 in a polarized epithelial cell.  相似文献   

3.
4.
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3. epithelial cells; protein sorting; Madin-Darby canine kidney cells; basolateral  相似文献   

5.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

6.
The C-terminal PDZ-binding motifs are required for polarized apical/basolateral localization of many membrane proteins. To determine the specificity of the PDZ-binding motifs in establishing cellular distribution, we utilized a 111-amino acid region from the C-terminus of cystic fibrosis transmembrane conductance regulator (CFTR) that is able to direct apical localization of fused reporter proteins. Substitution of the C-terminal PDZ-binding motif of CFTR with corresponding motifs necessary for basolateral localization of other membrane proteins did not lead to the redistribution of the fusion protein to the basolateral membrane. Instead, some fusion proteins remained localized to the apical membrane, whereas others showed no specific distribution. The specificity of the PDZ-based interactions was substantially increased when specific amino acids located upstream of the classical PDZ-binding motifs were included. However, even the presence of a longer C-terminal motif from a basolateral protein could not ensure basolateral distribution of the fusion protein. Our results indicate that the C-terminal PDZ-binding motifs are not the primary signals for polarized protein distribution, although they are required for targeting and/or stabilization of protein at the given location.  相似文献   

7.
Hagfish (Eptatretus burgeri) are agnathous and are the earliest vertebrates still in existence. Pavement cells adjacent to the mitochondria-rich cells show orthogonal arrays of particles (OAPs) in the gill of hagfish, a known ultrastructural morphology of aquaporin (AQP) in mammalian freeze-replica studies, suggesting that an AQP homolog exists in pavement cells. We therefore cloned water channels from hagfish gill and examined their molecular characteristics. The cloned AQP [E. burgeri AQP4 (EbAQP4)] encodes 288 amino acids, including two NPA motifs and six transmembrane regions. The deduced amino acid sequence of EbAQP4 showed high homology to mammalian and avian AQP4 (rat, 44%; quail, 43%) and clustered with AQP4 subsets by the molecular phylogenetic tree. The osmotic water permeability of Xenopus oocytes injected with EbAQP4 cRNA increased eightfold compared with water-injected controls and was not reversibly inhibited by 0.3 mM HgCl(2). EbAQP4 mRNA expression in the gill was demonstrated by the RNase protection assay; antibody raised against the COOH terminus of EbAQP4 also detected (by Western blot analysis) a major approximately 31-kDa band in the gill. Immunohistochemistry and immunoelectron microscopy showed EbAQP4 localized along the basolateral membranes of gill pavement cells. In freeze-replica studies, OAPs were detected on the protoplasmic face of the split membrane comprising particles 5-6 nm long on the basolateral side of the pavement cells. These observations suggest that EbAQP4 is an ancestral water channel of mammalian AQP4 and plays a role in basolateral water transport in the gill pavement cells.  相似文献   

8.
9.
TMEM192 (transmembrane protein 192) is a novel constituent of late endosomal/lysosomal membranes with four potential transmembrane segments and an unknown function that was initially discovered by organellar proteomics. Subsequently, localization in late endosomes/lysosomes has been confirmed for overexpressed and endogenous TMEM192, and homodimers of TMEM192 linked by disulfide bonds have been reported. In the present study the molecular determinants of TMEM192 mediating its transport to late endosomes/lysosomes were analysed by using CD4 chimaeric constructs and mutagenesis of potential targeting motifs in TMEM192. Two directly adjacent N-terminally located dileucine motifs of the DXXLL-type were found to be critical for transport of TMEM192 to late endosomes/lysosomes. Whereas disruption of both dileucine motifs resulted in mistargeting of TMEM192 to the plasma membrane, each of the two motifs was sufficient to ensure correct targeting of TMEM192. In order to study disulfide bond formation, mutagenesis of cysteine residues was performed. Mutation of Cys266 abolished disulfide bridge formation between TMEM192 molecules, indicating that TMEM192 dimers are linked by a disulfide bridge between their C-terminal tails. According to the predicted topology, Cys266 would be localized in the reductive milieu of the cytosol where disulfide bridges are generally uncommon. Using immunogold labelling and proteinase protection assays, the localization of the N- and C-termini of TMEM192 on the cytosolic side of the late endosomal/lysosomal membrane was experimentally confirmed. These findings may imply close proximity of the C-termini in TMEM192 dimers and a possible involvement of this part of the protein in dimer assembly.  相似文献   

10.
11.
To evaluate the roles of the C-termini of K + channels in subcellular targeting and protein-protein interactions, we created fusion constructs of the cell-surface antigen CD8 and the C-termini of Kv4.3, Kv1.4 and KvLQT1. Using a Cre-lox recombination system, we made 3 adenoviruses containing a fusion of the N-terminal-and transmembrane segments of CD8 with the C-termini of each of the 3 K + channels. Expression in polarized Opossum Kidney (OK) epithelial cells led to localization of CD8-Kv4.3 and CD8-Kv1.4 into the apical and basolateral membranes, while CD8-KvLQT1 remained in the endoplasmic reticulum (ER), even when co-expressed with MinK. When expressed in rat cardiac myocytes in culture, all the 3 constructs were diffusely targeted to the surface membrane. The ER retention of CD8-KvLQT1 in OK cells but not in cardiomyocytes thus reveals functional differences in trafficking between these two cell types. To probe functional roles of C-termini, we studied K + currents in cardiac myocytes expressing CD8-Kv4.3. Patch-clamp recordings of transient outward current revealed a hyperpolarizing shift of steady-state inactivation, implying that CD8-Kv4.3 may be disrupting the interaction of Kv4.x channels with one or more as-yet-undefined regulatory subunits. Thus, expression of tagged ion-channel fragments represents a novel, generalizable approach that may help to elucidate assembly, localization and function of these important signaling proteins.  相似文献   

12.
Distribution of AQP2 and AQP3 water channels in human tissue microarrays   总被引:5,自引:0,他引:5  
SummaryThe objective of this investigation was to use semi-quantitative immunohistochemistry to determine the distribution and expression levels of AQP2 and AQP3 proteins in normal human Tissue MicroArrays. Expression of the vasopressin regulated AQP2 was observed in a limited number of tissues. AQP2 was prominent in the apical and subapical plasma membranes of cortical and medullary renal collecting ducts. Surprisingly, weak AQP2 immunoreactivity was also noted in pancreatic islets, fallopian tubes and peripheral nerves. AQP2 was also localized to selected parts of the central nervous system (ependymal cell layer, subcortical white matter, hippocampus, spinal cord) and selected cells in the gastrointestinal system (antral and oxyntic gastric mucosa, small intestine and colon). These findings corroborate the restricted tissue distribution of AQP2. AQP3 was strongly expressed in many of the human tissues examined particularly in basolateral membranes of the distal nephron (medullary collecting ducts), distal colon, upper airway epithelia, transitional epithelium of the urinary bladder, tracheal, bronchial and nasopharyngeal epithelium, stratified squamous epithelial cells of the esophagus, and anus. AQP3 was moderately expressed in basolateral membranes of prostatic tubuloalveolar epithelium, pancreatic ducts, uterine endometrium, choroid plexus, articular chondrocytes, subchondral osteoblasts and synovium. Low AQP3 levels were also detected in skeletal muscle, cardiac muscle, gastric pits, seminiferous tubules, lymphoid vessels, salivary and endocrine glands, amniotic membranes, placenta and ovary. The abundance of basolateral AQP3 in epithelial tissues and its expression in many non-epithelial cells suggests that this aquaglyceroporin is a major participant in barrier hydration and water and osmolyte homeostasis in the human body.http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html, NCBI AceView, July 2003  相似文献   

13.
Water content within the epididymis of the male reproductive system is stringently regulated to promote sperm maturation. Several members of the aquaporin (AQP) family of water channel–forming integral membrane proteins have been identified in epididymal cells, but expression profiling for this epithelium is presently incomplete, and no AQP isoform has yet been identified on basolateral plasma membranes of these cells. In this study, we explored AQP expression by RT-PCR and light microscopy immunolocalizations using peroxidase and wide-field fluorescence techniques. The results indicate that several AQPs are coexpressed in the epididymis including AQP 5, 7, 9, and 11. Immunolocalizations suggested complex patterns in the spatial distribution of these AQPs. In principal cells, AQP 9 and 11 were present mainly on microvilli, whereas AQP 7 was localized primarily to lateral and then to basal plasma membranes in a region-specific manner. AQP 5 was also expressed regionally but was associated with membranes of endosomes. Additionally, AQPs were expressed by some but not all basal (AQP 7 and 11), clear (AQP 7 and 9), and halo (AQP 7 and 11) cells. These findings indicate unique associations of AQPs with specific membrane domains in a cell type– and region-specific manner within the epididymis of adult animals. (J Histochem Cytochem 56:1121–1135, 2008)  相似文献   

14.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

15.
Aquaporins are transmembrane protein channels which are known to help the passage of water and solutes across the cell membranes. AQP1, AQP3 and AQP5 are isoforms of aquaporin known to aid in transepithelial water movement. AQP3 is also known to aid in glycerol transport. The present study was conducted to investigate the role of AQP1, AQP3 and AQP5 in thermoregulation of buffaloes by probing the expression of the genes in skin of buffaloes during different season viz. winter, spring and summer. The skin tissue samples were collected from the neck region of Murrah buffaloes (n = 12) and analyzed for gene expression by RT-PCR and immunolocalization. The physiological responses including respiration rate, rectal temperature and neck skin temperature observed during summer were significantly higher than winter and spring seasons. The study revealed the expression of AQP1, AQP3 and AQP5 genes in skin samples. The relative mRNA expressions of AQP1, AQP3 and AQP5 in skin relative to spring season were 1.41 ± 0.47, 1.95 ± 0.22 and 6.77 ± 1.02 folds during summer which were significantly higher than other seasons. The up-regulation of the expression of the studied AQPs were concomitant with the increase in physiological responses including skin temperature and sweating rate during summer. During summer season, AQP1 were mostly immunolocalized in the walls of skin blood capillaries, while AQP3 were observed mostly in the epidermal layer of the skin. The immunolocalization of AQP5 were mostly observed in the secretory glands of skin. The up-regulation of AQP1, AQP3 and AQP5 in skin during summer season indicates their role in thermoregulation of buffaloes.  相似文献   

16.
Aquaporin (AQP)5, an exocrine-type water channel, was detected in the rat duodenum by Western blot analysis, and was localized by immunohistochemistry in the secretory granule membranes as well as in the apical and lateral aspects of the plasma membrane of Brunner's gland cells. Incubation of duodenal slices with vasoactive intestinal polypeptide (VIP) in vitro significantly increased the amount of AQP5 in the apical membrane fraction in a dose- and time-dependent manner with the amount reaching a plateau at 100 nM VIP and becoming near maximal after a 30-s incubation. Protein kinase inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7, 50 muM), and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89; PKA-specific, 1 muM) blocked this increase, but PKC-specific inhibitor calphostin C did not, implying the involvement of PKA but not PKC in this cellular event. Intravenous injection with VIP (40 mug/kg body wt) provoked dilation of the lumen of the Brunner's gland at 2 and 7 min and increased the staining intensity of AQP5 in the apical and lateral membranes. AQP1 (both nonglycosylated and glycosylated forms) was also found to localize in the apical and basolateral membranes of cells of Brunner's gland. VIP, however, did not provoke any significant change in the AQP1 level in the apical membrane, as judged from the results of the above in vitro and in vivo experiments. These results suggest that VIP induced the exocytosis of granule contents and simultaneously caused translocation of AQP5 but not of AQP1 to the apical membrane in Brunner's gland cells.  相似文献   

17.
Phosphorylation pathway has been identified as an important step in membrane trafficking for AQP5. We generated stably transfected BEAS-2B human bronchial epithelial cells with various over-expression constructs on permeable support. In stable cells with wild-type AQP5 and S156A (AQP5 mutant targeting PKA consensus sequence), AQP5 expression was predominantly polarized to the apical membrane, whereas stable cells with N185D (AQP5 mutant targeting second NPA motif), mainly localized to the cytoplasm. Treatment with H89 and/or chlorophenylthio-cAMP (cpt-cAMP) did not affect membrane expression of AQP5 in any of three stable cells. In cells with wild-type AQP5 and N185D, AQP5s were phosphorylated by PKA, while phosphorylation of AQP5 was not detected in cells with S156A. These results indicate that, in AQP5, serine156 may be phosphorylated by PKA, but membrane expression of AQP5 may not be regulated by PKA phosphorylation. We conclude that AQP5 membrane targeting can include more than one mechanism besides cAMP dependent phosphorylation.  相似文献   

18.
LITAF is a small cellular protein with an unknown function. The C-terminus of LITAF contains a highly conserved domain termed the SIMPLE-like domain (SLD), while the N-terminus contains two PPXY motifs that mediate protein-protein interactions with WW-domain containing proteins. LITAF also harbors two endosome/lysosome targeting sequences at its C-terminus, but there has been conflicting reports regarding its intracellular localization. Here, we demonstrate that LITAF is localized to the late endosome/lysosomal compartment in a variety of cell lines. We also show that Itch, a WW-domain containing protein, and LITAF strongly interact and that this interaction depends on the two PPXY motifs in the N-terminus of LITAF. Interestingly, co-expression of LITAF with Itch induces major changes in Itch intracellular localization, bringing Itch from the trans-Golgi network to lysosomes. We show that this re-localization is dependent upon the interaction with the PPXY sequences of LITAF, since disruption of these binding motifs completely abrogates Itch re-localization.  相似文献   

19.
Fusion constructs of partial sequences of triadin that contain green fluorescent protein at the N-terminus and glutathione transferase at the C-terminus have been expressed in human embryonic kidney -293 cells. A comparison of the subcellular disposition of a range of triadin fusion peptides indicates localization either to a few large organelles as a default target or to endoplasmic reticulum when amino acids 68-98 are present and structurally intact. Fluorescence from the conjugate of monochlorobimane with glutathione identifies whether the C-terminus has a cytoplasmic or luminal location. A stable transit of the membrane occurs in triadin2-98. Triadin2-117 and 2-267 give both cytoplasmic and luminal C-termini. Both triadin89-117 and triadin89-267 distribute in membranes, but do not cross them. The data are interpreted to indicate that cardiac triadin contains an alpha-helical membrane transit through the hydrophobic domain, 49-68, and a membrane association through the short hydrophobic domain, 102-114.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号