首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of biodiversity among amphibians is a current concern. Our hypothesis is that the embryos of amphibian species at risk of extinction could be cryopreserved by vitrification, using methods which have proved successful with fish oocyte. To test this hypothesis, samples of four cryoprotectants - methanol (MeOH), dimethyl sulphoxide (Me2SO), propylene glycol (PG) and polyethylene glycol (PEG), some singly, some in combination, were plunged in liquid nitrogen for 5 min to find the best solution for vitrification. To find the least toxic of these solutions, blastulae and stage G17 embryos of Bufotes Viridis, a typical amphibian, were exposed to solutions at different concentrations (0.5–10 M) for different lengths of time (15–30 min), with and without their normal protective jelly coats. In each case the number of survivors, which reached stage G25 was counted. Finally a series of embryos was vitrified in liquid nitrogen using the most efficient and least toxic cryoprotectants.Propylene glycol had the best vitrification characteristics, but MeOH vitrified at higher concentrations. The optimum regime, with the least toxic ctyoprotectants, consisted of 1M Me2SO for 15 min and a combination of 15% PEG(w/v) + 3M PG + 2M Me2SO for 3 min, with the jelly coat intact, followed by vitrification. This gave a survival percentage of 87.6% immediately after vitrification. Methods designed for cryopreservation of fish embryos make a good starting point for cryopreservation of the embryos of amphibian.  相似文献   

2.
The particular characteristics of fish embryos require the development of specific methods for cryopreservation. One of the main obstacles is related to the presence of membranes and compartments with different water and cryoprotectant permeability. To assess dimethyl sulfoxide (Me2SO4) permeability, we exposed turbot embryos (Scophthalmus maximus) at F stage (tail bud) to the cryoprotectant solutions used in a vitrification protocol and then evaluated the Me2SO4 content inside the embryo using high-performance liquid chromatography (HPLC). The Me2SO4 influx was analyzed in normal embryos and in embryos treated with pronase (2mg/ml) in order to increase chorion permeability. The evaluation was made after each step of cryoprotectant incorporation and removal. Three embryo compartments were distinguished: the perivitelline space (PVS), the yolk sac (YS) and the cellular compartment (CC), and the relative volumes of each, estimated using stereoscopic microscopy imaging, were 11.37, 81.23 and 7.40%, respectively. The Me2SO4 concentration inside the embryos was calculated based on their entrance into one, two or three compartments. Results suggest high entrance of Me2SO4 into the PVS and a low concentration of this cryoprotectant inside the other compartments. Pronase did not significantly increase Me2SO4 influx, but facilitated its elimination during the washing steps.  相似文献   

3.
Zhang YZ  Zhang SC  Liu XZ  Xu YJ  Hu JH  Xu YY  Li J  Chen SL 《Theriogenology》2005,63(3):763-773
With the purpose of finding an ideal cryoprotectant or combination of cryoprotectants in a suitable concentration for flounder (Paralichthys olivaceus) embryo cryopreservation, we tested the toxicities, at culture temperature (16 degrees C), of five most commonly used cryoprotectants-dimethyl sulfoxide (Me2SO), glycerol, methanol (MeOH), 1,2-propylene glycol (PG) and ethylene glycol (EG). In addition, cryoprotective efficiency to flounder embryos of individual and combined cryoprotectants were tested at -15 degrees C for 60 min. Five different concentrations of each of the five cryoprotectants and 20 different combinations of these cryoprotectants were tested for their protective efficiency. The results showed that the toxicity to flounder embryos of the five cryoprotectants are in the following sequence: PG < MeOH < Me2SO < glycerol < EG (P < 0.05); whereas the protective efficiency of each cryoprotectant, at -15 degrees C for a period of 60 min, are in the following sequence: PG > Me2SO approximately MeOH approximately glycerol > EG (greater symbols mean P < 0.05, and approximate symbols mean P > 0.05). Methanol combined with any one of the other cryoprotectants gave the best protection, while ethylene glycol combined with any one of the other cryoprotectants gave the poorest protection at -15 degrees C. Toxicity effect was concentration dependent with the lowest concentration being the least toxic for all five cryoprotectants at 16 degrees C. For PG, MeOH and glycerol, 20% solutions gave the best protection at -15 degrees C; whereas a 15% solution of Me2SO, and a 10% solution of EG, gave the best protection at -15 degrees C.  相似文献   

4.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

5.
Chen SL  Tian YS 《Theriogenology》2005,63(4):1207-1219
Conventional cryopreservation of complex teleost embryos has been unsuccessful, possibly because their large size (1-7 mm diameter), multi-compartmental structure and low water permeability lead to intracellular ice formation and chilling injury. To overcome these obstacles, we have developed a vitrification procedure for cryopreservation of flounder (Paralichthys olivaceus) embryos. In initial toxicity tests, propylene glycol (PG) and methanol (MeOH) were less toxic to embryos than dimethylformamide (DMF) or dimethyl sulfoxide (Me2SO), whereas ethylene glycol (EG) and glycerol (Gly) were toxic to all tested embryos. Embryos between four-somite and tail bud stages were more tolerant to vitrifying solutions than embryos in other developmental stages. Four vitrifying solutions (FVS1-FVS4) were prepared by combining a basic saline solution (BS2) and cryoprotectants PG and MeOH in different proportions (FVS1: 67, 20 and 13%; FVS2: 60, 24 and 16%; FVS3: 55, 27 and 18%; FVS4: 50, 30 and 20% of BS2, PG and MeOH, respectively). Their impact on flounder embryos was then compared. FVS1 produced the highest survival rate; whereas deformation rate was highest for FVS4. Five-step equilibration of embryos in FVS2 resulted in higher survival rates than equilibration in 4, 3, 2 or 1 steps. Flounder embryos varying from the 14-somite to the pre-hatching stage were cryopreserved in the four vitrifying solutions in liquid nitrogen for 1-7 h. From eight experiments, 20 viable thawed embryos were recovered from 292 cryopreserved embryos. Fourteen larvae with normal morphology hatched successfully from the 20 surviving frozen-thawed embryos from five experiments. Embryos at the tail bud stage exhibited greater tolerance to vitrification than embryos at other stages. These results establish that cryopreservation of flounder embryos by vitrification is possible. The technology has many potential applications in teleost germplasm resource conservation.  相似文献   

6.
The aim of this study was to examine the effects of partial removal of yolk and cryoprotectant mixtures on the viability of cryopreserved primordial germ cells (PGCs) and elucidated the differentiation ability of cryopreserved PGCs in zebrafish. First, dechorionated yolk-intact and yolk-depleted (partially yolk removed) embryos, PGCs of which were labeled with green fluorescence protein (GFP), were vitrified after serial exposures to pretreatment solution (PS) and vitrification solution (VS) that contained ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or propylene glycol at 3 and 5 M, respectively. Although partial removal of yolk improved the viability of cryopreserved PGCs, numbers of PGCs with pseudopodial movement were limited (0–2.6 cells/embryo). Next, yolk-depleted embryos were cryopreserved using mixtures of two types of cryoprotectants. The maximum survival rate of PGCs (81%; 9.6 cells/embryo) was obtained from the yolk-depleted embryos vitrified using PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO and 56% (5.3 cells/embryo) of PGCs showed pseudopodial movement. Finally, PGCs recovered from yolk-depleted embryos (wild-type) that were vitrified under the optimum condition were transplanted individually into 236 sterilized recipient blastulae (recessive light-colored). Seven recipients matured and generated progeny with characteristics inherited from the PGC donor. In conclusion, the authors confirmed the beneficial effects of partial removal of yolk on the viability of cryopreserved PGCs and that the viability of the PGCs was improved by using PS and VS that contained two types of cryoprotectants, especially PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO, and that recovered PGCs retained ability to differentiate into functional gametes.  相似文献   

7.
Due to a lack of cryopreservation protocols for fish eggs and embryos, alternative techniques which will enable storage of female genetic resources are crucial for future development of reproduction management in conservation biology and aquaculture. Experiments were conducted to develop an optimal vitrification protocol for cryopreservation of brown trout Salmo trutta juvenile ovarian tissue. Needle immersed vitrification (NIV) method was used where ovaries were pinned on an acupuncture needle, passaged through equilibration and vitrification solutions containing different combinations and concentrations of methanol (MeOH), propylene glycol (PG) and dimethyl sulfoxide (Me2SO) and subsequently plunged into liquid nitrogen. Vitrification solutions containing equal cryoprotectant concentrations (3M Me2SO and 3M PG) yielded the highest oogonia survival rates (up to 40%) and qualitatively and quantitatively unaltered perinucleolar follicles. The method developed for brown trout could be applied to the conservation of female genetic resources of other salmonid species, including endangered and endemic species or populations.  相似文献   

8.
The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.  相似文献   

9.
Tada N  Sato M  Amann E  Ogawa S 《Theriogenology》1993,40(2):333-344
Survival of mouse 2-cell embryos was evaluated after exposure to 1.38, 2.75 or 5.5 M single cryoprotectants [dimethylsulphoxide (DMSO), acetamide (Ac) and propylene glycol (PG)], components frequently utilized as a vitrification solution, for 0.5, 1, 2 and 10 minutes at room temperature prior to vitrification. More than 80 % of the treated embryos developed to normal blastocysts in culture, after exposure to 1.38-2.75 M of each reagent for 0.5 minutes, although Ac tended to provide with have a deleterious effect on their survival. When the embryos were vitrified with solutions containing DP (2.75 M DMSO and 2.75 M PG) plus 0, 0.5 and 1.0 M Ac after a 0.5-minute exposure, their in vitro survival rates to the blastocysts were 44, 41 and 37%, respectively, showing no significant difference among them (x(2)=0.1-0.6, P>0.05). This indicates that the presence of Ac is not always needed for vitrifying mouse 2-cell embryos. Embryos, that had been vitrified with DP solution supplemented with 1.0 M sucrose (DPS) after a 0.5- minute exposure, exhibited significantly higher in vitro survival rate (82%) than those vitrified with DP (44%) (x(2)=23.4, P<0.001). Similar high survival rate (81%) was obtained when they were vitrified with DP plus 0.16 M raffinose (DPR) (x(2)=28.3, P<0.001). In vivo survival of embryos vitrified with DPS or DPR after a 0.5-minute exposure was both 49%, and there was no significant difference comparing to the unvitrified control group (60%). This method is rapid, efficient and reliable, and thus may be of practical use for cryopreserving mouse 2-cell embryos.  相似文献   

10.
Although fish embryos have been used in a number of slow-freezing cryopreservation experiments, they have never been successfully cryopreserved. In part this is because little is known about whether ice forms within the embryo during the slow-freezing dehydration process. Therefore, we examined the temperature of intraembryonic ice formation (T(IIF)) and the temperature of extraembryonic ice formation (T(EIF)), using a cryomicroscope. We used both unmodified zebrafish embryos and those with water channels (aquaporin-3 or AQP3) inserted into their membranes to increase permeability to water and cryoprotectants, examined at 100% epiboly to the 6-somite stage. In these experiments we examined: (1) the spontaneous freezing of (external) solutions; (2) the spontaneous freezing of solutions containing embryos; (3) the effect of preloading the embryos with cryoprotectants on T(IIF); (4) whether preloading the embryos with cryoprotectant helps in survival after nucleating events in the solution; and (5) the damaging effects of extracellular nucleation events versus solution toxicity on the embryos. The solutes alone (embryo medium--EM, sucrose culture medium, 1 M propylene glycol in EM, and 1 M propylene glycol in a sucrose culture medium) froze at -14.9 +/- 1.1, -17.0 +/- 0.3, -17.8 +/- 1.0, and -17.7 +/- 1.4, respectively. There was no difference amongst these means (P > 0.05), thus adding cryoprotectant did not significantly lower the nucleation point. Adding embryos (preloaded with cryoprotectant or not) did not change the basic freezing characteristics of these solutes. In all these experiments, (T(EIF)) equaled (T(IIF)), and there was no difference in the freezing point of the solutions with or without the embryos (P > 0.05). Additionally, there was no difference in the freezing characteristics of embryos with and without aquaporins (P > 0.05). The formation of intraembryonic ice was lethal to the zebrafish embryos in all cases. But this lethal outcome was not related to solution injury effects, because 88-98% of embryos survived when exposed to a higher solute concentration with no ice present. Taken together, these data suggest that slow-freezing is not a suitable option for zebrafish embryos. The mechanism of this high temperature nucleation event in zebrafish embryos is still unknown.  相似文献   

11.
Using the current blood bank storage conditions at 22 degrees C, the viability and function of human platelets can be maintained for only 5 days. This does not allow for the necessary and extensive banking of platelets needed to treat patients afflicted with thrombocytopenia, a side effect of many invasive surgeries such as cardiopulmonary bypass or bone marrow transplantation. The development of optimal techniques for long-term cryopreservation and banking of human platelets would provide the ability to greatly extend the viable life of the platelet and would fulfill an increasing and urgent need in many clinical applications. To determine the optimal techniques for platelet preservation, the expression of an activation marker, phosphatidylserine, on the platelet membrane during storage at 22 and 8 degrees C as well as during the different freezing preservation processes was examined using flow cytometry and annexin V binding assay. Human platelets were identified by both CD41 and light scatter in flow cytometry. In cryopreservation experiments, effects of the following factors on platelet activation were evaluated: (a) cryoprotective agents (CPAs) type: dimethyl sulfoxide (Me2SO), ethylene glycol (EG), and propylene glycol (PG), (b) CPA concentration ranging from 0 to 3 M, and (c) ending temperatures of a slow cooling process at -1 degrees C/min. Our results demonstrated that (a) approximately 50% of platelets were activated on days 7 and 16 at 22 and 8 degrees C, respectively; (b) platelets were not significantly activated after 30-min exposure to 1 M Me2SO, EG, and PG at 22 degrees C, respectively, and (c) there was a significant difference in cryoprotective efficacy among these three CPAs in preventing platelets from cryoinjury. After being cooled to -10 degrees C, 74% of the cryopreserved platelets survived (nonactivated) in 1 M Me2SO solution, while in 1 M EG and 1 M PG solutions, 62 and 42% of the platelets survived, respectively. Using the information that Me2SO consistently yields higher percentages of nonactivated platelets and does not seem to be cytotoxic to platelets for 30-min exposure time, this was found to be the optimal cryoprotective agent for platelets. In addition, significant Me2SO toxicity to platelets was not noted until Me2SO concentrations exceeded 2 M. Finally, a concentration of 1 M Me2SO proved to be the most effective at all cryopreservation ending temperatures tested (-10, -30, -60, and -196 degrees C). In conclusion, under the present experimental conditions, a storage temperature of 8 degrees C appeared to be much better than 22 degrees C. Although the potential chemical toxicity of 1 M Me2SO, EG, or PG is negligible, 1 M Me2SO was found to be optimum for cryopreservation of human platelets. PG has the least cryoprotective function for low-temperature platelet survival.  相似文献   

12.
The Nieuwkoop center is the earliest signaling center during dorsal-ventral pattern formation in amphibian embryos and has been implied to function in induction of the Spemann-Mangold organizer. In zebrafish, Nieuwkoop-center-like activity resides in the dorsal yolk syncytial layer (YSL) at the interface of the vegetal yolk cell and the blastoderm. hex homologs are expressed in the anterior endomesoderm in frogs (Xhex), the anterior visceral endoderm in mice, and the dorsal YSL in zebrafish (hhex). Here, we investigate the control of hhex expression in the YSL. We demonstrate that bozozok (boz) is absolutely required for early hhex expression, while overexpression of boz causes ectopic hhex expression. Activation of Wnt/beta-catenin signaling by LiCl induces hhex expression in wild-type YSL but not in boz mutant embryos, revealing that boz activity is required downstream of Wnt/beta-catenin signaling for hhex expression. Further, we show that the boz-mediated induction of hhex is independent of the Boz-mediated repression of bmp2b. Our data reveal that repressive effects of both Vega1 and Vega2 may be responsible for the exclusion of hhex expression from the ventral and lateral parts of the YSL. In summary, zebrafish hhex appears to be activated by Wnt/beta-catenin in the dorsal YSL, where Boz acts in a permissive way to limit repression of hhex by Vega1 and Vega2.  相似文献   

13.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

14.
A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P < 0.05). The same indices were superior following vitrification-thawing of the blastocysts in 40% EG + 20% PVP than it was in 40% EG + 10% PVP (76.1 +/- 5.5% vs 63.7 +/- 1.8%; P < 0.05; and 61.6 +/- 6.0% vs 70.5 +/- 4.7%; P < 0.01, respectively). Exposure to the vitrification solution (40% EG + 20% PVP) at higher temperatures (37.5 degrees C vs 4 degrees C) reduced both survival and hatching rates (45.8 +/- 6.9% vs 83.9 +/- 4.4% and 41.5 +/- 1.8% vs 64.0 +/- 4.7%, respectively; P < 0.001). These results indicate that blastocysts vitrified after prefreezing the diluent portions of the straws do favor developmental competence of in vitro produced embryos.  相似文献   

15.
T Kojima  T Soma  N Oguri 《Cryobiology》1985,22(5):409-416
The aim of the present study was to examine effects of altering thawing conditions and procedure of addition and dilution of Me2SO on the viability of frozen-thawed rabbit morulae. Five hundred and sixty two rabbit morulae were cooled from room temperature to -80 degrees C at 1 degree C/min in the presence of 1.5 M dimethyl sulfoxide (Me2SO) using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, cooled rapidly, and stored in liquid nitrogen. When Me2SO was added in a single step, the frozen embryos were thawed in ambient air at 40 degrees C/min and Me2SO was diluted in a single step, 99 of 107 (93%) embryos cultured for 48 hr and 12 of 32 (38%) embryos transferred to 6 recipients developed to expanding blastocysts and viable fetuses, respectively. When Me2SO was added in a single step and the frozen embryos were thawed at the same rate and transferred directly without removal of Me2SO to culture media or oviducts of 8 recipients, 67 of 75 (89%) embryos cultured and 12 of 40 (30%) embryos transferred developed to expanding blastocysts and viable fetuses, respectively. There were no significant differences between these survival rates and survival rates obtained by conventional method, i.e., frozen embryos were thawed at 4 degrees C/min by interrupted slow method and Me2SO was added and diluted in a stepwise manner.  相似文献   

16.
Wang R  Li Z  Wang Y  Gui JF 《PloS one》2011,6(7):e22555
Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5'-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16-17 hpf, a typical "salt-and-pepper" expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study provides a transgenic zebrafish line that marks the through liver organogenesis.  相似文献   

17.
In Study 1 over 2000 4- to 8-cell mouse embryos were randomly pooled and assigned to 1 of 12 treatment groups. A 2 X 2 X 3 factorial design was used to analyze two types of cryoprotectant/post-thaw (PT) dilutions (dimethyl sulfoxide [Me2SO]/stepwise dilution versus glycerol/sucrose dilution), two storage containers (glass ampoules versus plastic straws), and three cooling treatments. Two commercial, controlled-rate freezing machines were examined, employing either nitrogen gas (Planer) or thermoelectric (Glacier) cooling. Embryos were cooled slowly (0.5 degrees C/min) to -35 or -80 degrees C and then cooled rapidly by transfer into liquid nitrogen (LN2). Thawed embryos were cultured for 24 hr after which developmental stage, post-thaw survival (PTS), embryo degeneration rate (EDR), quality grade (QG), and fluorescein diacetate viability grade (VG) were assessed. Overall, PTS and EDR were similar (P greater than 0.05) among the three freezing unit/plunge temperature treatments. Cumulative results of container and cryoprotectant/PT dilution treatments consistently demonstrated greater PTS, QG, and VG ratings and lower EDR values when embryos were frozen in ampoules using glycerol/sucrose dilution. Embryos treated with Me2SO/stepwise dilution were particularly sensitive to freezing damage when stored in plastic straws and plunged into LN2 at -35 degrees C. Study 2 was directed at determining whether Study 1 methods for diluting Me2SO-protected embryos markedly affected PTS rates. Post-thaw culture percentages were no different (P greater than 0.05) for four- to eight-cell Me2SO-treated embryos frozen in ampoules (using the forced-LN2 device), thawed, and diluted either conventionally in reduced concentrations of Me2SO or in the sucrose treatment normally accorded glycerolated embryos.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The yolk syncytial layer (YSL) has been regarded as one of the main obstacles for a successful cryopreservation of fish embryos. The purpose of this study was to identify and characterize the YSL in Prochilodus lineatus, a fish species found in southeastern Brazil and considered a very important fishery resource. Embryos were obtained through artificial breeding by hormonal induction. After fertilization, the eggs were incubated in vertical incubators with a controlled temperature (28 degrees C). Embryos were collected in several periods of development up to hatching and then fixed with 2% glutaraldehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.3). Morphological analyses were carried out under either light, transmission or scanning electron microscopy. The formation of the YSL in P. lineatus embryos starts at the end of the cleavage stage (morula), mainly at the margin of the blastoderm, and develops along the embryo finally covering the entire yolk mass (late gastrula) and producing a distinct intermediate zone between the yolk and the endodermal cells. The YSL was characterized by the presence of microvilli on the contact region with the yolk endoderm. A cytoplasmic mass, full of mitochondria, vacuoles, ribosomes, endomembrane nets and euchromatic nuclei, indicated a high metabolic activity. This layer is shown as an interface between the yolk and the embryo cells that, besides sustaining and separating the yolk, acts as a structure that makes it available for the embryo. The structural analyses identified no possible barriers to cryoprotectant penetration.  相似文献   

19.
Our objective was to study the effect of the concentration of ethylene glycol (EG) and dimethyl sulfoxide (Me2SO) during vitrification on the development of porcine blastocysts. Vitrification was performed with 0.4 M sucrose and either a Me2SO and EG mixture (15%, 16% and 17% v/v of each) or EG alone (40% v/v), using superfine open pulled straws. Fresh and vitrified blastocysts were cultured for 48 h and the survival and hatching rates were evaluated. Some vitrified and fresh embryos were processed for Hoechst 33342 staining and proliferation cell nuclear antigen (PCNA) inmunolocalization to determine the proliferation index. The survival rate was similar for fresh and vitrified blastocysts, except for blastocysts vitrified using 15% of cryoprotectants, which displayed lower (P < 0.05) survival than fresh blastocysts. Vitrified and fresh blastocysts had a similar cell proliferation index (range: 75.8 ± 3.2 to 83.7 ± 3). When only hatched blastocysts among groups were compared, the proliferation rate decreased (P < 0.05) after vitrification with 17% of EG–Me2SO. In conclusion, the concentration of EG–Me2SO could be decreased to 16% in the vitrification medium with no reduction of the in vitro developmental ability of the blastocysts. In addition, a 40% EG-based medium can be used for vitrification with similar results to those achieved with a medium containing 16% EG–Me2SO.  相似文献   

20.
The study investigated the effects of internal (DMSO, 1,2-propanediol, glycerol, ethylene glycol, methanol, N,N-dimethylacetamide) and external cryoprotectants (glucose, sucrose) on the viability and on morphometric parameters of zebrafish embryos. From the tested internal cryoprotectants, DMSO had the lowest toxicity, followed by 1,2-propanediol and glycerol. The external cryoprotectants were less toxic then the internal ones. Early ontogenetic stages were more sensible to cryoprotectant exposure than advanced stages. Two-step incubation procedures in increasing concentrations of internal and external cryoprotectants were superior to multiple-step exposure procedures. All tested vitrification solutions exceeded the tolerance limit of embryos. The tolerance of zebrafish embryos to cryoprotectants was highly variable in a concentration range causing approximately 50% embryo mortality. The width of the perivitelline space showed significant morphometrical changes due to cryoprotectant exposure. In the germinative tissue non-significant changes occurred. The yolk did not change morphometrically after exposure to internal cryoprotectants and showed no sign of dehydration after exposure to external cryoprotectants. Based on these results the study comes to the following conclusions: as yolk dehydration was impossible and as vitrification solutions were over the tolerance limit it seems unlikely that successful vitrification of zebrafish embryos can be achieved. Under these considerations slow freezing methods would be a better option as lower cryoprotectant concentrations can be used and embryos can be dehydrated during freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号