首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

2.
Beebe KD  Wang P  Arabaci G  Pei D 《Biochemistry》2000,39(43):13251-13260
A method for the rapid identification of high-affinity ligands to Src homology-2 (SH2) domains is reported. A phosphotyrosyl (pY) peptide library containing completely randomized residues at positions -2 to +3 relative to the pY was synthesized on TentaGel resin, with a unique peptide sequence on each resin bead (total 2.5 x 10(6) different sequences). The library was screened against the biotinylated N- and C-terminal SH2 domains of protein tyrosine phosphatase SHP-1, and the beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay involving a streptavidin-alkaline phosphatase conjugate. Peptide ladder sequencing of the selected beads using matrix-assisted laser desorption ionization mass spectrometry revealed consensus sequences for both SH2 domains. The N-terminal SH2 domain strongly selects for peptides with a leucine at the -2 position; at the C-terminal side of the pY residue, it can recognize two distinct classes of peptides with consensus sequences of LXpY(M/F)X(F/M) and LXpYAXL (X = any amino acid), respectively. The C-terminal SH2 domain exhibits almost exclusive selectivity for peptides of the consensus sequence, (V/I/L)XpYAX(L/V). Several representative sequences selected from the library were individually synthesized and tested for binding to the SH2 domains by surface plasmon resonance and for their ability to stimulate the catalytic activity of SHP-1. Both experiments have demonstrated that the selected peptides are capable of binding to the SH2 domains with dissociation constants (K(D)) in the low micromolar range.  相似文献   

3.
A general, combinatorial library method for the rapid identification of high-affinity peptide ligands of protein modular domains is reported. The validity of this method has been demonstrated by determining the sequence specificity of four Src homology 2 (SH2) domains derived from protein tyrosine phosphatase SHP-1 and SHP-2 and inositol phosphatase SHIP. A phosphotyrosyl (pY) peptide library was screened against the SH2 domains, and the beads that carry high-affinity ligands of the SH2 domains were identified and peptides were sequenced by partial Edman degradation and mass spectrometry. The results reveal that the N-terminal SH2 domain of SHP-2 is capable of recognizing four different classes of pY peptides. Binding competition studies suggest that the four classes of pY peptides all bind to the same site on the SH2 domain surface. The C-terminal SH2 domains of SHP-1 and SHP-2 and the SHIP SH2 domain each bind to pY peptides of a single consensus sequence. Database searches using the consensus sequences identified most of the known as well as many potential interacting proteins of SHP-1 and/or SHP-2. Several proteins are found to bind to the SH2 domains of SHP-1 and SHP-2 through a new, nonclassical ITIM motif, (V/I/L)XpY(M/L/F)XP, which corresponds to the class IV peptides selected from the pY library. The combinatorial library method should be generally applicable to other protein domains.  相似文献   

4.
Wang P  Fu H  Snavley DF  Freitas MA  Pei D 《Biochemistry》2002,41(19):6202-6210
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. In this work, we have developed a novel combinatorial library method, termed "enzyme-catalyzed loss of isotope peak signal enhancement (ECLIPSE)", to determine the substrate specificity of PTPs. This method involves partial labeling of pY at a nonbridging phosphate oxygen atom with 50% (18)O ((16)O/(18)O = 1:1). A 361-member solution-phase peptide library with randomization at the -1 and -2 positions (relative to pY), RNNXXpYA-NH(2) (X = 19 alpha-amino acids except for Cys), was synthesized with the partially (18)O-labeled pY by the split-synthesis method. Each member of the resulting pY peptide library appeared as a doublet peak in the mass spectrum (m/z m and m + 2.0043). Limited treatment of the library with a PTP removed the mass-degenerate phosphoryl group from the most preferred substrates to generate products as singlet peaks, which were readily identified and sequenced by tandem mass spectrometry. Screening of the pY library against the catalytic domain of SHP-1 revealed that SHP-1 prefers an acidic residue at the -2 position, with aspartic acid being slightly better than glutamic acid. At the -1 position, SHP-1 also prefers an acidic residue, although a variety of other amino acids are also tolerated. On the other hand, positively charged residues at these positions render the corresponding peptides very poor substrates of SHP-1. Several selected peptides were individually synthesized and assayed against SHP-1, and the kinetic data confirmed the screening results. These results demonstrate that ECLIPSE is a viable method for studying the substrate specificity of PTPs.  相似文献   

5.
Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 2) domains that recognize phosphotyrosines (pY) and flanking sequences. In case of the SHP-2 receptor tyrosine phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain. The pY-peptide-binding site on the N-terminal SH2 domain does not overlap with the PTP binding region. Nevertheless, pY-peptide binding causes domain dissociation and phosphatase activation. Comparative multi-nanosecond molecular dynamics simulations on the N-SH2 domain in ligand-bound and free states have been performed to study the allosteric mechanism that leads to domain dissociation upon pY-peptide binding. Significant ligand-dependent differences in the conformational flexibility of regions that are involved in SH2-PTP domain association have been observed. The results support a mechanism of signal transduction where SH2-peptide binding modulates the domain flexibility and reduces its capacity to fit into the entrance of the PTP catalytic domain of SHP-2.  相似文献   

6.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

7.

Background  

The N-terminal SH2 domain (N-SH2) of the non-receptor tyrosine phosphatase SHP-2 is involved both in localization of SHP-2 by recognition of phosphotyrosine (pY) peptides and self-inhibition of SHP-2 phosphatase activity through the formation of a protein – protein interface with the phosphatase domain. Mutations that disrupt this interface break the coupling between pY-peptide binding cleft conformation and self-inhibition, thereby increasing both SHP-2 phosphatase activity and pY-peptide binding affinity, and are associated with the congenital condition Noonan syndrome and various pediatric leukemias. To better characterize the molecular process involved in N-SH2 pY-dependent binding, we have applied explicit-solvent molecular dynamics simulations to study the closed-to-open transition of the N-SH2 pY-peptide binding cleft.  相似文献   

8.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

9.
The phosphatase activity of SH2-containing protein tyrosine phosphatase (SHP) is inhibited by its SH2 domains and C-terminal tail. In order to determine the inhibitory effects of the SH2 domains and C-terminal tail, we have expressed and purified the catalytic domains of SHP-1 and SHP-2, and the SH2 domain truncated SHP-1 and SHP-2. We have then measured their kinetic parameters using p-nitrophenyl phosphate (p-NPP) and phosphotyrosine (pY) as substrates under the same experimental conditions. The results indicate that the pH-dependent profiles of SHP-1 and SHP-2 are mainly determined by their catalytic domains. Both enzymes have maximum activity at pH 5.0. In addition, the phosphatase activity of different forms of SHP-1 and SHP-2 decreases as the salt concentration increases. Without SH2 domains, both SHP-1 and SHP-2 are no longer inhibited by their C-terminal tails. However, the C-terminal tail of SHP-1 can further prevent the salt inhibition of the phosphatase activity. Under the same experimental conditions, the catalytic domain of SHP-1 is two times more active than the catalytic domain of SHP-2.  相似文献   

10.
CTLA-4 is well documented in its negative regulation of T-cell proliferation. However, little is known regarding the signaling mechanisms induced by CTLA-4. CTLA-4 associates with the phosphatidylinositol 3-kinase, the phosphatase SHP-2 and the clathrin adaptor complexes AP-1 and AP-2. SHP-2 SH2 domain binding to CTLA-4 is unusual given the absence of a I/VxYxxI/V/L motif. Here, we demonstrate that the phosphorylation of CTLA-4 tyrosines (YVKM and YFIP) fails to allow for single or tandem SHP-2 SH2 domain binding. This was observed using wild-type and inactive SHP-2 as well as a construct with the isolated two SH2 domains. The phosphorylated YVKM and YFIP motifs therefore do not appear to represent novel binding motifs for SHP-2 SH2 domains. At the same time, we could confirm that SHP-2 can associate with CTLA-4 in murine T-cells indicating that the interaction between the phosphatase and CTLA-4 is an indirect event, possibly mediated by PI 3-kinase/SHP-2 binding.  相似文献   

11.
Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected H2O2-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes. [BMB Reports 2015; 48(3): 184-189]  相似文献   

12.
Tyrosine phosphorylation of membrane proteins plays a crucial role in cell signaling by recruiting Src homology 2 (SH2) domain-containing signaling molecules. Recently, we have isolated a transmembrane protein designated PZR that specifically binds tyrosine phosphatase SHP-2, which has two SH2 domains (Zhao, Z. J., and Zhao, R. (1998) J. Biol. Chem. 273, 29367-29372). PZR belongs to the immunoglobulin superfamily. Its intracellular segment contains four putative sites of tyrosine phosphorylation. By site-specific mutagenesis, we found that the tyrosine 241 and 263 embedded in the consensus immunoreceptor tyrosine-based inhibitory motifs VIYAQL and VVYADI, respectively, accounted for the entire tyrosine phosphorylation of PZR. The interaction between PZR and SHP-2 requires involvement of both tyrosyl residues of the former and both SH2 domains of the latter, since its was disrupted by mutating a single tyrosyl residue or an SH2 domain. Overexpression of catalytically inactive but not active forms of SHP-2 bearing intact SH2 domains in cells caused hyperphosphorylation of PZR. In vitro, tyrosine-phosphorylated PZR was efficiently dephosphorylated by the full-length form of SHP-2 but not by its SH2 domain-truncated form. Together, the data indicate that PZR serves not only as a specific anchor protein of SHP-2 on the plasma membrane but also as a physiological substrate of the enzyme. The coexisting binding and dephosphorylation of PZR by SHP-2 may function to terminate signal transduction initiated by PZR and SHP-2 and to set a threshold for the signal transduction to be initiated.  相似文献   

13.
The substrate specificity of catalytic domains and the activation of full length protein tyrosine phosphatases, SHP-1 and SHP-2 have been investigated using synthetic phosphotyrosyl peptides derived from SIPRalpha1. We found that the catalytic domains of SHP-1 and SHP-2 exhibit different substrate specificity towards a longer trideca-peptide pY(469+3) ((-7)RPEDTLTpYADLDM(+5)) and not to the shorter decapeptide pY(469) ((-5)EDTLTpYADLD(+4)), the former being the substrate of SHP-2 only. Furthermore, the activation of full-length SHP-1 and not the SHP-2 by the deca/trideca-peptides suggested SIRPalpha 1 to be possibly acting as both an upstream activator and a substrate for SHP-1, and merely as the downstream substrate for SHP-2 in signaling events.  相似文献   

14.
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases.Src homology 2 (SH2) domains are modular protein structures that are important for signal transduction due to their ability to bind phosphotyrosine (pY)-containing polypeptides within defined amino acid sequence motifs (1). SH2 domains are found in various signaling enzymes and adaptor proteins. Given the reversibility of protein tyrosine phosphorylation and the affinity of SH2-pY binding, the interactions of SH2 domains are inherently dynamic and diverse. Indeed, selective, transient binding to pY motifs is a key mechanism through which intracellular signaling networks are dynamically assembled, localized, and regulated. In addition to mediating protein interactions in trans, SH2 domains bind intramolecularly (2). For example, in Src family kinases (SFKs), the SH2 domain binds in cis to the phosphorylated C-terminal tail as a mechanism to constrain and thereby auto-inhibit the intervening tyrosine kinase domain (3, 4). As well, SH2 domains of cytoplasmic tyrosine kinases have been shown to affect the kinase activity of adjacent kinase domains through allosteric interactions (5). The SFKs are therefore highly regulated as a function of their SH2 domains, which exist in dynamic equilibrium between intra- and intermolecular interactions (6). Hence, as discussed by Pawson (7), the transient and diverse interactions of an SH2 domain can regulate signaling enzymes and constitutes a major mechanism of signal transduction in response to extracellular signals.The structure of the SH2 domain has been extensively characterized. At its core is a conserved antiparallel β-sheet sandwiched between two α-helices (8). SH2 domains bind phosphotyrosine-containing peptides in an extended conformation across the central β-sheet, with the pY residue inserted in a deep recognition pocket formed by conserved residues from strands βB, βC, and βD, helix αA, and the phosphate binding loop. Peptide binding specificity is determined by more variable binding surfaces on the SH2 domain, which recognize residues C-terminal to the pY residue. For the SFK SH2 domains, the three residues C-terminal to the pY residue (pY+1,+2,+3) are dominant determinants of specificity (9, 10), with the domain binding most tightly to sequences containing the motif pYEEI (11, 12). The hydrophobic pY+3 residue inserts in a deep hydrophobic specificity pocket defined by residues of the EF and BG loops (8, 13, 14). Indeed, structural analysis of the SH2 domain revealed that the configuration of the EF and BG loops is critical in dictating SH2 domain specificity by shaping the ligand-binding surface and controlling accessibility of the pY+3 binding pocket (15). Mutation of a single residue of the EF loop can drastically impact peptide binding specificity by altering the pY+3 pocket (1517), indicating the importance of the pY+3 pocket in substrate selectivity for the SFK SH2 domains.In addition to binding pY-containing polypeptides, SH2 domains themselves may be modulated by phosphorylation. For example, phosphorylation of the Src SH2 domain at conserved Y213 resulted in activation of the cognate kinase domain, possibly by impairing SH2 binding to the phosphorylated C-terminal tail (18). Similarly, phosphorylation of Lck at the equivalent SH2 residue (Y192) generally reduced binding to pY-peptides and proteins (19). Phosphorylation at S690 in the SH2 domain of the p85α subunit of PI 3-kinase decreased its affinity for pY-containing proteins and promoted feedback inhibition of PI 3-kinase and Akt in response to cellular starvation (20). Conversely, tyrosine phosphorylation of the tensin-3 SH2 domain stimulated substrate binding and biological activity (21). Therefore, phosphorylation of SH2 domains appears to be a general mechanism for modulating their binding properties.Here, we report that Y194 in the SH2 domain of the SFK Lyn, a residue conserved in SFK SH2 domains, is frequently phosphorylated in hematopoietic and other cancers. In vitro protein and peptide interactions with the Lyn SH2 domain were affected by this phosphorylation. Our results suggest that tyrosine phosphorylation of the SFK SH2 domain modulates both its binding affinity and specificity and may constitute another layer of regulation in signaling networks.  相似文献   

15.
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 > pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 > pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.  相似文献   

16.
After consideration of the tertiary structure of the pY+3 binding pocket in SH2 domains, isoleucine of Ac-pYEEIE was replaced with various unnatural aliphatic amino acids and the binding affinities for Lck, Src, and Fyn SH2 domains were measured. We determined the characteristics of the amino acid at the pY+3 position in the phosphopeptide ligands for the specificity for the SH2 domains.  相似文献   

17.
Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.  相似文献   

18.
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived phosphotyrosyl peptides (P-peptides) by using molecular dynamics, free energy, and surface plasmon resonance (SPR) analyses. In SPR analysis, these P-peptides showed no binding to the C-SH2 domain, but P-peptides containing a phospho-YXXM or a non-phospho-YXXM motif did bind to the N-SH2 domain. The N-SH2 domain has two phosphotyrosine binding sites in its N- (N1) and C- (N2) terminal regions. Interestingly, we found that P-peptides of pY1180 and pY1241 favored to bind to the N2 site, although all other P-peptides showed favorable binding to the N1 site. Remarkably, two phosphotyrosines, pY1178 and pY1243, which are just 63 amino acids apart from the pY1241 and pY1180, respectively, showed favorable binding to the N1 site. These findings indicate a possibility that the pair of phosphotyrosines, pY1178-pY1241 or pY1243-pY1180, will fold into an appropriate configuration for binding to the N1 and N2 sites simultaneously. Our model structures of the cytoplasmic C-terminal domain of ErbB3 receptor also strongly supported the speculation. The calculated binding free energies between the N-SH2 domain and P-peptides showed excellent qualitative agreement with SPR data with a correlation coefficient of 0.91. The total electrostatic solvation energy between the N-SH2 domain and P-peptide was the dominant factor for its binding affinity.  相似文献   

19.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

20.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号