首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zwitterionic carboxybetaine (CB) has unique dual functionality for ligand immobilization on a nonfouling background. The properties of CB groups depend on their spacer groups between the positive quaternary amine groups and the negative carboxyl groups and environmental factors (e.g., ionic strengths and pH values). In this work, five polycarboxybetaines were prepared, including one polycarboxybetaine methacrylate (polyCBMA) and four polycarboxybetaine acrylamides (polyCBAAs) with different spacer groups. The polymers were grafted from a gold surface covered with initiators using surface-initiated atom transfer radical polymerization. Fibrinogen adsorption was measured as a function of ionic strengths and pH values using surface plasmon resonance sensors. The responsive protein adsorption on four polyCBAAs was mapped out. Results show that most of these surfaces exhibit high protein resistance in a wide range of ionic strengths and are more effective than zwitterionic self-assembled monolayers. Although protein adsorption tends to increase at low ionic strength and low pH value, it is still very low for polycarboxybetaines with a methylene, an ethylene, or a propylene spacer group but is more evident for polyCBAA with a longer spacer group (i.e., a pentene group). The response to ionic strengths and pH values can be attributed to the antipolyelectrolyte and protonation/deprotonation properties of polycarboxybetaines, respectively. Both of these properties are related to the spacer groups of CBs.  相似文献   

2.
Zwitterionic hydrogels based on poly(carboxybetaine) methacrylate (polyCBMA) were developed to protect implantable electrochemical glucose biosensors from biofouling in complex media. To enhance the linearity and sensitivity of the sensing profile, both physical and chemical adsorption methods were developed. Results show that glucose sensors coated with polyCBMA hydrogels via the chemical method achieve very high sensitivity and good linearity in response to glucose in PBS, 10%, 50%, and 100% human blood serum. Essentially identical glucose signals were observed even after prolonged exposure to blood samples for over 12 days. The excellent performance of polyCBMA hydrogel coating offers great promise for designing biocompatible implantable glucose biosensors in biological medium.  相似文献   

3.
Nick Aldred  Guozhu Li  Ye Gao 《Biofouling》2013,29(6):673-683
Zwitterionic polymers such as poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA) have demonstrated impressive fouling-resistance against proteins and mammalian cells. In this paper, the effects of these surface chemistries on the settlement and behavior of an ubiquitous fouling organism, the cypris larva of the barnacle Balanus amphitrite (=Amphibalanus amphitrite), were studied in the laboratory. Conventional settlement assays and behavioral analysis of cyprids using Noldus Ethovision 3.1 demonstrated significant differences in settlement and behavior on different surfaces. Cyprids did not settle on the polySBMA or polyCBMA surfaces over the course of the assay, whereas settlement on glass occurred within expected limits. Individual components of cyprid behavior were shown to differ significantly between glass, polySBMA and polyCBMA. Cyprids also responded differently to the two zwitterionic surfaces. On polySBMA, cyprids were unwilling or unable to settle, whereas on polyCBMA cyprids did not attempt exploration and left the surface quickly. In neither case was toxicity observed. It is concluded that a zwitterionic approach to fouling-resistant surface development has considerable potential in marine applications.  相似文献   

4.
Ladd J  Zhang Z  Chen S  Hower JC  Jiang S 《Biomacromolecules》2008,9(5):1357-1361
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.  相似文献   

5.
The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This not only may help to increase the production of preparative procedures but is likely to promote current knowledge about how the living cells or tissues operate. Protein inactivation starts with the unfolding of the protein molecule by the contact of water with hydrophobic clusters located on the surface of protein molecules, which results in ice-like water structure. Reduction of the nonpolar surface area by the formation of a suitable biospecifc complex or by use of carbohydrate moieties thus may stabilize proteins. This review discusses oriented immobilization of antibodies by use of immobilized protein A or G. The section about oriented immobilization of proteins by use of their suitable antibodies covers immobilization of enzymes utilizing their adsorption on suitable immunosorbents prepared using monoclonal or polyclonal antibodies, preparation of bioaffinity adsorbent for the isolation of concanavalin A and immobilization of antibodies by use of antimouse immunoglobulin G, Fc-specific (i.e. specific towards the constant region of the molecule). In the further section immobilization of antibodies and enzymes through their carbohydrate moieties is described. Oriented immobilization of proteins can be also based on the use of boronate affinity gel or immobilized metal ion affinity chromatography technique. Biotin–avidin or streptavidin techniques are mostly used methods for oriented immobilization. Site-specific attachment of proteins to the surface of solid supports can be also achieved by enzyme, e.g., subtilisin, after introduction a single cysteine residue by site-directed mutagenesis.  相似文献   

6.
Poly(dimethyl siloxane) (PDMS) is extensively used for biomedical applications due to its low cost, ease of fabrication, high durability and flexibility, oxygen permeability, and self-healing properties. PDMS, however, has some significant drawbacks. PDMS endures unacceptably high levels of nonspecific protein fouling when used with biological samples due to its superhydrophobic characteristics. Unfortunately, conventional surface modification methods do not work for PDMS due to its low glass transition temperature. This phenomenon has been well-known for years as "hydrophobic regeneration". For the same reason, it is also very difficult to bring functionalities onto PDMS surfaces. Herein, we demonstrate how a superhydrophilic zwitterionic material, poly(carboxybetaine methacrylate) (pCBMA), can provide a highly stable coating with long-term stabilty due to the sharp contrast in hydrophobicity between pCBMA and PDMS. This material is able to suppress nonspecific protein adsorption in complex media and functionalize desired biomolecules needed in applications, such as diagnostics, without sacrificing its nonfouling characteristics.  相似文献   

7.
Novel artificial extracellular matrices were synthesized in the form of semi-interpenetrating polymer networks containing copolymers of poly(ethylene glycol) and acrylic acid (PEG-co-AA) grafted with synthetic bioadhesive peptides onto exposed carboxylic acid moieties. These substrates were very resistant to cell adhesion, but when they were grafted with adhesive peptides they were highly biospecific in their ability to support cell adhesion. Extensive preadsorption of adhesive proteins or peptides did not render these materials cell adhesive; yet covalent grafting of adhesive peptides did render these materials highly cell adhesive even in the absence of serum proteins. Polymer networks containing immobilized PEG-co-AA were grafted with peptides at densities of 475 +/- 40 pmol/cm(2). Polymer networks containing immobilized PEG-co-AA N-terminally grafted with GRGDS supported cell adhesion efficiencies of 42 +/- 4% 4 h after seeding and became confluent after 12 h. These cells displayed cell spreading and cytoskeletal grafted with inactive control peptides (GRDGS, GRGES, or no peptide) supported cell adhesion efficiencies of 0 +/- 0%, even when challenged with high seeding densities (to 100,000 cell/cm(2)) over 14 days. These polymer networks are suitable substrates to investigate in vitro cell-surface interactions in the presence of serum proteins without nonspecific protein adsorption adhesion signals other than those immobilized for study.  相似文献   

8.
Cha T  Guo A  Jun Y  Pei D  Pei D  Zhu XY 《Proteomics》2004,4(7):1965-1976
A high-density poly(ethylene glycol) (PEG)-coated Si(111) surface is used for the immobilization of polyhistidine-tagged protein molecules. This process features a number of properties that are highly desirable for protein microarray technology: (i) minimal nonspecific protein adsorption; (ii) highly uniform surface functionality; (iii) controlled protein orientation; and (iv) highly specific immobilization reaction without the need of protein purification. The high-density PEG-coated silicon surface is obtained from the reaction of a multi-arm PEG (mPEG) molecule with a chlorine terminated Si(111) surface to give a mPEG film with thickness of 5.2 nm. Four out of the eight arms on each immobilized mPEG molecule are accessible for linking to the chelating iminodiacetic acid (IDA) groups for the binding of Cu(2+) ions. The resulting Cu(2+)-IDA-mPEG-Si(111) surface is shown to specifically bind 6x histidine-tagged protein molecules, including green fluorescent protein (GFP) and sulfotransferase (ST), but otherwise retains its inertness towards nonspecific protein adsorption. We demonstrate a particular advantage of this strategy: the possibility of protein immobilization without the need of prepurification. Surface concentrations of relevant chemical species are quantitatively characterized at each reaction step by X-ray photoelectron spectroscopy (XPS). This kind of quantitative analysis is essential in tuning surface concentration and chemical environment for optimal sensitivity in probe-target interaction.  相似文献   

9.
Two-dimensional mean-field lattice theory is used to model immobilization and stabilization of an enzyme on a hydrophobic surface using grafted polymers. Although the enzyme affords biofunctionality, the grafted polymers stabilize the enzyme and impart biocompatibility. The protein is modeled as a compact hydrophobic-polar polymer, designed to have a specific bulk conformation reproducing the catalytic cleft of natural enzymes. Three scenarios are modeled that have medical or industrial importance: 1), It is shown that short hydrophilic grafted polymers, such as polyethylene glycol, which are often used to provide biocompatibility, can also serve to protect a surface-immobilized enzyme from adsorption and denaturation on a hydrophobic surface. 2), Screening of the enzyme from the surface and nonspecific interactions with biomaterial in bulk solution requires a grafted layer composed of short hydrophilic polymers and long triblock copolymers. 3), Hydrophilic polymers grafted on a hydrophobic surface in contact with an organic solvent form a dense hydrophilic nanoenvironment near the surface that effectively shields and stabilizes the enzyme against both surface and solvent.  相似文献   

10.
Previously, we developed a new molecular delivery system to target single living cells by using atomic force microscope and ultrathin needle referred to as nanoneedle. This system delivers molecules into the cell by attaching them to the surface of nanoneedle. However, nonspecific protein adsorption on the nanoneedle surface inside the living cells limits the range of application of this system. In the present study, we focused on nonspecific protein adsorption onto the nanoneedle surface inside the cells and examined whether this protein adsorption was reduced by modifying the nanoneedle surface with a biocompatible phospholipid polymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) unit. MPC polymer coating of the surface of silicon wafer reduced nonspecific adsorption of proteins from liver extracts and prevented the formation of clot-like protein aggregates. MPC polymer also decreased nonspecific adsorption of cytosolic protein onto the nanoneedle surface inside the living cell. On the other hand, MPC polymer showed no effect on nonspecific mechanical interaction between nanoneedle and the cell components. Surface modification with MPC polymer is a useful technique to modify the surface properties of nanoneedle.  相似文献   

11.
Kim J  Singh N  Lyon LA 《Biomacromolecules》2007,8(4):1157-1161
We report investigations of specific and nonspecific adsorption effects on bioresponsive hydrogel microlenses to better understand their utility and potential advantages for biosensing. Bioresponsive microgels were prepared from stimuli-responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-co-AAc) microgels after functionalization with both biotin and ABP (as a photoaffinity label) via carbodiimide chemistry. Bioresponsive hydrogel microlenses were then constructed from the microgels via Coulombic assembly of the anionic microgels on a positively charged, silane-modified, glass substrate. Specific and nonspecific protein binding on the hydrogel microlenses was studied by monitoring the optical properties using brightfield and fluorescence optical microscopies. The bioresponsivity, as determined by changes in the microlensing power, is strongly coupled to the formation of cross-links via ligand-protein and/or antigen-antibody binding. However, the microlensing phenomenon and the intrinsic bioresponsivity of the hydrogels are completely insensitive to simple adsorption via nonspecific protein binding from reconstituted human serum. These results suggest that the hydrogel microlens construct may be a good candidate for a wide range of applications in which the bioresponsive material would be required to operate in complex biological media.  相似文献   

12.
A very large proportion of modern immunoassays involve the use of synthetic solid phases to immobilize one of the reactants. These solid-phase immunoassays (SPIs) therefore involve ligand-receptor interactions that occur within a reaction volume close to the solution/solid phase interface. As a consequence, the immunochemistry/biochemistry of these ligand-receptor interactions differs from that of their counterparts in solution. Furthermore, the immobilization process can significantly alter the biological activity of the reactant; most adsorbed proteins on polystyrene or silicone are partially or largely denatured. Therefore the use of alternative methods of immobilization is attractive but may result in little increase in the amount of total functional reactant. However, all commonly used solid phases do not have the same properties or the same capacity for reactant immobilization or experience the same level of nonspecific binding. Empiricism plays a major role in SPIs. Derivations of mass law equations for measuring the antigen capture of solid-phase antibodies, for determining the affinity of solid phase for protein adsorption, and for estimating antibody affinity are reviewed.  相似文献   

13.
The kinetics of protein adsorption are studied using a generalized diffusion approach which shows that the time-determining step in the adsorption is the crossing of the kinetic barrier presented by the polymers and already adsorbed proteins. The potential of mean-force between the adsorbing protein and the polymer-protein surface changes as a function of time due to the deformation of the polymer layers as the proteins adsorb. Furthermore, the range and strength of the repulsive interaction felt by the approaching proteins increases with grafted polymer molecular weight and surface coverage. The effect of molecular weight on the kinetics is very complex and different than its role on the equilibrium adsorption isotherms. The very large kinetic barriers make the timescale for the adsorption process very long and the computational effort increases with time, thus, an approximate kinetic approach is developed. The kinetic theory is based on the knowledge that the time-determining step is crossing the potential-of-mean-force barrier. Kinetic equations for two states (adsorbed and bulk) are written where the kinetic coefficients are the product of the Boltzmann factor for the free energy of adsorption (desorption) multiplied by a preexponential factor determined from a Kramers-like theory. The predictions from the kinetic approach are in excellent quantitative agreement with the full diffusion equation solutions demonstrating that the two most important physical processes are the crossing of the barrier and the changes in the barrier with time due to the deformation of the polymer layer as the proteins adsorb/desorb. The kinetic coefficients can be calculated a priori allowing for systematic calculations over very long timescales. It is found that, in many cases where the equilibrium adsorption shows a finite value, the kinetics of the process is so slow that the experimental system will show no adsorption. This effect is particularly important at high grafted polymer surface coverage. The construction of guidelines for molecular weight/surface coverage necessary for kinetic prevention of protein adsorption in a desired timescale is shown. The time-dependent desorption is also studied by modeling how adsorbed proteins leave the surface when in contact with a pure water solution. It is found that the kinetics of desorption are very slow and depend in a nonmonotonic way in the polymer chain length. When the polymer layer thickness is shorter than the size of the protein, increasing polymer chain length, at fixed surface coverage, makes the desorption process faster. For polymer layers with thickness larger than the protein size, increases in molecular weight results in a longer time for desorption. This is due to the grafted polymers trapping the adsorbed proteins and slowing down the desorption process. These results offer a possible explanation to some experimental data on adsorption. Limitations and extension of the developed approaches for practical applications are discussed.  相似文献   

14.
Guanidinobenzoatase, a plasma protein with possible application as a ‘tumor marker’, has been fully purified by one-step affinity chromatography. The affinity matrix was prepared by ‘controlled’ immobilization of an enzyme inhibitor (agmatine) onto commercial agarose gels containing carboxyl moieties activated as N-hydroxysuccinimide esters. In this way, agmatine becomes immobilized through an amido bond and preserves an ionized guanidino moiety. Different matrices with different concentration of ligands were prepared in order to evaluate their properties as affinity supports. Interestingly, matrices with a very low concentration of immobilized ligands (2 μmol/ml, corresponding to the modification of only 5% of active groups in the commercial resins) exhibited a low capacity for unspecific adsorption of proteins (as anion-exchange resins) and displayed also a high capacity for specific adsorption of our target protein. On the other hand, when affinity matrices possessed a moderate concentration of agmatine (10 μmol/ml of gel or higher), two undesirable phenomena were observed: (a) the matrix behaves as a very good anionic exchange support able to non-specifically adsorb most of plasma proteins and (b) the specific adsorption of our target protein becomes much lower. The latter phenomenon could be due to steric hindrances promoted by the interaction between each individual immobilized ligand and the corresponding binding pocket in the target protein. These hindrances could also be promoted by the presence of a fairly dense layer of immobilized ligands covering the support surface, thus preventing interactions between immobilized ligands and partially buried protein-binding pockets. In this way, a successful affinity purification (23.5% yield, ×220 purification factor, a unique electrophoretic band) could be achieved by combination of three approaches: (i) the use of affinity matrices possessing a very low density of immobilized ligands, (ii) performing affinity adsorption at high ionic strength and (iii) performing specific desorption with substrates or substrate analogues.  相似文献   

15.
One-step immobilization method for peptides and proteins is developed by using modified parylene film with formyl groups which is suitable for microplate-based immunoassay and SPR biosensor application. The immobilization of peptides and proteins is achieved through the covalent bonding of the formyl group with the primary amine groups of peptides and proteins, which no additional activation step is required. In this work, the immobilization efficiency of parylene-H is estimated in comparison with parylene-A and physical adsorption, using biotinylated-cyclic citrullinated peptide (biotinylated-CCP), human chorionic gonadotropin (hCG) and horseradish peroxidase (HRP) as model proteins. The applicability of parylene-H film to SPR biosensor is demonstrated by estimating the detection range and sensitivity of SPR biosensor at various thicknesses. The immobilization efficiency of parylene-H film for SPR biosensor was compared with physical adsorption by using HRP as a model protein.  相似文献   

16.
In this article, surface coatings derived from homo-bifunctional tri(ethylene glycol) (EG3) and hexa(ethylene glycol) (EG6) molecules which have two terminal aldehyde groups are reported. These homo-bifunctional molecules can be used to functionalize amine-terminated surfaces through crosslinking one aldehyde group to surface amine groups, while leaving the other aldehyde group available for covalent immobilization of proteins. Best of all, after reducing remaining aldehyde groups on the surface with a reducing agent, sodium borohydride, the surface becomes oligo(ethylene glycol) (OEG)-terminated. The OEG-terminated surface can resist nonspecific protein adsorption, a feature that is often required for many biosensors and biomedical devices. Although some mixed self-assembled monolayers formed from two different organothiols also permit covalent protein immobilization and resist nonspecific protein adsorption, the procedure reported herein requires only one type of homo-bifunctional molecule and can be applied to both silicon and gold surfaces.  相似文献   

17.
Abraham S  So A  Unsworth LD 《Biomacromolecules》2011,12(10):3567-3580
Nonfouling polymer architectures are considered important to the successful implementation of many biomaterials. It is thought that how these polymers induce conformational changes in proteins upon adsorption may dictate the fate of the device being utilized. Herein, oxidized silicon nanoparticles (SiNP) were modified with various forms of poly(carboxybetaine methacrylamide) (PCBMA) for the express purpose of understanding how polymer chemistry affects film hydration, adsorbed protein conformation, and clot formation kinetics. To this end, carboxybetaine monomers differing in intercharge separating spacer groups were synthesized, and nitroxide-mediated free radical polymerization (NMP) was conducted using alkoxyamine initiators with hydrophobic (TEMPO) and hydrophilic (β-phosphonate) terminal groups. The physical properties (surface composition, thickness, grafting density, etc.) of the resulting polymer-SiNP conjugates were quantified using several techniques, including Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The effect of spacer group on the surface charge density was determined using zeta potential measurements. Three proteins, viz., lysozyme, bovine α-lactalbumin, and human serum albumin, were used to evaluate the effect film properties (charge, hydration, end-group) have on adsorbed protein conformation, as determined by circular dichroism (CD), fluorescence spectroscopy, and fluorescence quenching techniques. Hemocompatibility of these surfaces was observed by measuring clot formation kinetics using the plasma recalcification time assay. It was found that chain chemistry, as opposed to end-group chemistry, was a major determiner for water structure, adsorbed protein conformation, and clotting kinetics. It is thought that the systematic evaluation of how both chain (internal) and end-group (external) polymer properties affect film hydration, protein conformation, and clot formation will provide valuable insight that can be applied to all engineered surfaces for biomedical applications.  相似文献   

18.
To utilize aptamers as molecular recognition agents in biosensors and biodiagnostics, it is important to develop strategies for reliable immobilization of aptamers so that they retain their biophysical characteristics and binding abilities. Here we report on quartz crystal microbalance (QCM) measurements and atomic force microscope (AFM)-based force spectroscopy studies to evaluate aptasensors fabricated by different modification strategies. Gold surfaces were modified with mixed self assembled monolayers (SAMs) of aptamer and oligoethylene glycol (OEG) thiols (HS-C(11)-(EG)(n)OH, n=3 or 6) to impart resistance to nonspecific protein adsorption. By affinity analysis, we show that short OEG thiols have less impact on aptamer accessibility than longer chain thiols. Backfilling with OEG as a step subsequent to aptamer immobilization provides greater surface coverage than using aptamer and OEG thiol to form a mixed SAM in one-step. Immunoglobulin E and vascular endothelial growth factor (VEGF) were studied as target proteins in these experiments. Binding forces obtained by these strategies are similar, demonstrating that the biophysical properties of the aptamer on the sensors are independent from the immobilization strategy. The results present mixed SAMs with aptamers and co-adsorbents as a versatile strategy for aptamer sensor platforms including ultrasensitive biosensor design.  相似文献   

19.
Tissue-type plasminogen activator (t-PA) has shown significant effects on the treatment of common thrombosis. In this work, molecular dynamics simulations are used in protein–ligand interaction analysis to investigate the affinity of ligands for affinity chromatography. A hydrogel matrix grafted with amine (positively charged), carboxyl (negatively charged) and hydroxyl (neutral) ligands separately is designed, and its adsorption–desorption dynamics are studied in detail. The residues on the surface of t-PA, on which the S1 pocket is located, could be more easily adsorbed by charged ligands grafted onto the hydrogel matrix than neutral ligands. The findings offer new insights into the affinity of various ligands for t-PA, and could be of potential use in t-PA purification.  相似文献   

20.
Cataract surgery is a routine ophthalmologic intervention resulting in replacement of the opacified natural lens by a polymeric intraocular lens (IOL). A main postoperative complication, as a result of protein adsorption and lens epithelial cell (LEC) adhesion, growth, and proliferation, is the secondary cataract, referred to as posterior capsular opacification (PCO). To avoid PCO formation, a poly(ethylene glycol) (PEG) chemical coating was created on the surface of hydrogel IOLs. Attenuated total reflectance Fourier transform infrared spectroscopy, "captive bubble" and "water droplet" contact angle measurements, and atomic force microscopy analyses proved the covalent grafting of the PEG chains on the IOL surface while keeping unchanged the optical properties of the initial material. A strong decrease of protein adsorption and cell adhesion depending on the molar mass of the grafted PEG (1100, 2000, and 5000 g/mol) was observed by performing the relevant in vitro tests with green fluorescent protein and LECs, respectively. Thus, the study provides a facile method for developing materials with nonfouling properties, particularly IOLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号