首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Takasu  T Yamada  Y Shimizu 《FEBS letters》1987,225(1-2):43-47
Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol 13-acetate (TPA) and calcium ionophore A23187 increase cytoplasmic free calcium ([Ca2+]i) and stimulate arachidonic acid release and production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in cultured porcine thyroid cells. Addition of EGF, TPA or A23187 to the cells loaded with fura-2, a fluorescent Ca2+ indicator, causes an immediate increase in [Ca2+]i, which is the earliest event after mitogen stimulation. This [Ca2+]i response occurs immediately, reaching a maximum within several seconds. EGF, TPA and A23187 stimulate arachidonic acid release and PGE2 and 6-keto PGF1 alpha production; the maximum effects are obtained after 2-4 h incubation. EGF, TPA and A23187 increase [Ca2+]i and then stimulate arachidonic acid release and PG production.  相似文献   

2.
3.
Effects of calcium ionophore A23187 and BAY-K-8644, a calcium channel agonist, on cytoplasmic free calcium ([Ca2+]i) and H2O2 generation were studied in cultured porcine thyroid cells. We monitored continuously the effects of A23187 and BAY-K-8644 on [Ca2+]i and H2O2 generation, using the intracellularly trapped fluorescent Ca2+ indicator, fura-2, and homovanillic acid, respectively. A23187 and BAY-K-8644 induce an immediate increase in [Ca2+]i and H2O2 generation. The A23187- and BAY-K-8644-induced [Ca2+]i responses and H2O2 generation occur immediately, reach a maximum within several seconds, and then slowly decline. The minimum doses of A23187 or BAY-K-8644 to increase [Ca2+]i stimulate H2O2 generation. H2O2 generation is regulated by [Ca2+]i.  相似文献   

4.
The effect of concanavalin A and ionophore A23187 on leucine uptake by human peripheral lymphocytes has been examined. Preincubation of the cells with 32 micrograms/ml concanavalin A or 0.1 microM A23187 increased leucine uptake by 67% and 100%, respectively. Both concanavalin A and A23187 could, within 2 min, induce a more than 2-fold increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i). This increase by concanavalin A was completely blocked by the addition of 0.1 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8) to incubation medium; TMB-8 partially blocked the action of A23187. The stimulation of leucine uptake by concanavalin A and A23187 was strongly inhibited by the presence of TMB-8 in the medium, whereas the basal uptake was not affected by this intracellular Ca2+ antagonist. Amiloride did not inhibit the stimulation of leucine uptake by concanavalin A. The concanavalin A- and A23187-induced elevation of [Ca2+]i was accompanied by membrane hyperpolarization. Concanavalin A-stimulated leucine uptake was greatly inhibited by the presence of an excess of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid. These results indicate that the increase in [Ca2+]i may function as a signal of the stimulation by mitogen of leucine uptake mediated by system L, finally inducing membrane hyperpolarization in human lymphocyte.  相似文献   

5.
TRH stimulates a biphasic increase in intracellular free calcium ion, [Ca2+]i. Cells stably transfected with TRH receptor cDNA were used to compare the response in lines with and without L type voltage-gated calcium channels. Rat pituitary GH-Y cells that do not normally express TRH receptors, rat glial C6 cells, and human epithelial Hela cells were transfected with mouse TRH receptor cDNA. All lines bound similar amounts of [3H][N3-Me-His2]TRH with identical affinities (dissociation constant = 1.5 nM). Both pituitary lines expressed L type voltage-gated calcium channels; depolarization with high K+ increased 45Ca2+ uptake 20- to 25-fold and [Ca2+]i 12- to 14-fold. C6 and Hela cells, in contrast, appeared to have no L channel activity. GH4C1 cells responded to TRH with a calcium spike (6-fold) followed by a sustained second phase. When TRH was added after 100 nM nimodipine, an L channel blocker, the initial calcium burst was unaffected but the second phase was abolished. GH-Y cells transfected with TRH receptor cDNA responded to TRH with a 6-fold [Ca2+]i spike followed by a plateau phase (>8 min) in which [Ca2+]i remained elevated or increased. Nimodipine did not alter the peak TRH response or resting [Ca2+]i but reduced the sustained phase, which was eliminated by chelation of extracellular Ca2+. In the transfected glial C6 and Hela cells without calcium channels, TRH evoked transient, monophasic 7- to 9-fold increases in [Ca2+]i, and [Ca2+]i returned to resting levels within 3 min. Thapsigargin stimulated a gradual, large increase in [Ca2+]i in transfected C6 cells, and subsequent addition of TRH caused no further rise. Removal of extracellular Ca2+ from transfected C6 cells shortened the [Ca2+]i responses to TRH, to endothelin 1, and to thapsigargin. The TRH responses were pertussis toxin-insensitive. In summary, TRH can generate a calcium spike in pituitary, C6, and Hela cells transfected with TRH receptor cDNA, but the plateau phase of the [Ca2+]i response is not observed when the receptor is expressed in a cell line without L channel activity.  相似文献   

6.
This is the first report to show that pancreatic islet cells generate H2O2 and this H2O2 generation is regulated synergistically by cytoplasmic free calcium ([Ca2+]i) and protein kinase-C. Effects of calcium ionophore A23187 and 12-O-tetradecanoylphorbol 13-acetate (TPA), a tumor promoter, on H2O2 generation were studied in whole pancreatic islets obtained from male Wistar rats. We employed A23187 to elevate cytoplasmic free calcium, and TPA to activate protein kinase-C and monitored continuously their effects on H2O2 generation, measured using homovanillic acid and horseradish peroxidase. A23187 stimulates H2O2 generation. TPA, which activates protein kinase-C, augments this A23187-stimulated H2O2 generation. H2O2 generation is stimulated by an increase in [Ca2+]i and regulated synergistically by [Ca2+]i and protein kinase-C.  相似文献   

7.
The cytosolic free calcium ion concentration ([Ca2+]i) of individual lymphocytes was measured by microfluorometry with dual excitation wavelengths using quin 2 for fura-2. Fura-2 was a more suitable fluorescent Ca2+ indicator than quin 2 for measurements of single cells because of the standard curve calibrated for fura-2 had a good linearity, and the standard deviation (SD) of the value of the intensity ratio of fura-2-loaded cells was much smaller than that of quin 2-loaded cells. The [Ca2+]i in quiescent lymphocytes was about 1 x 10(-7) M, and an increase in the [Ca2+]i was observed within a few minutes of ionomycin, protein A, phorbol myristate acetate (PMA) or concanavalin A (Con A) stimulation. Ionomycin-induced proliferation occurred when the initial [Ca2+]i was approximately 3 x 10(-7) M or greater. The increase in the [Ca2+]i induced by Con A occurred transiently, and another rise in the [Ca2+]i was observed in the stage prior to the S-phase. These results indicate that Ca2+ is necessary for stimulated lymphocytes to enter the cell cycle and S-phase.  相似文献   

8.
The calcium ionophore, A23187, when used alone was found to induce proliferation of murine T cells, at concentrations of 0.5-1 mM. This response required the presence of syngeneic splenic adherant cells (SAC) as a source of accessory cells. Interestingly, only CD4+ T cells but not CD8+ T cells or B cells responded to the calcium ionophore by proliferation. The inability of CD8+ T cells or B cells to respond was not related to decreased elevation in the intracellular ionized calcium [Ca2+]i concentration induced by the ionophore, because activated CD4+ T, CD8+ T and B cells all exhibited similar elevation in [Ca2+]i. The inability of CD8+ T cells to respond to calcium ionophore was probably due to insufficient production of autocrine growth factors, such as IL-2, inasmuch as the addition of exogenous IL-2 could completely restore the CD8+ T cell responsiveness. Also, exogenous rIL-1 could partially restore purified T cell response to calcium ionophore, whereas, rIL-6 failed to do so. IL-2, but not IL-4, acted as an autocrine growth factor for T cells responding to the calcium ionophore in the presence of SAC, since, antibodies against IL-2 or IL-2 receptor (IL-2R) but not against IL-4, could inhibit the T cell proliferation. Furthermore, exogenous rIL-2 but not rIL-4 supported the proliferation of T cells to calcium ionophore in the absence of accessory cells. Our results suggest that murine lymphocytes exhibit heterogeneity in their proliferative responsiveness to calcium ionophore and that this may not depend on the early activation signal such as the elevation in [Ca2+]i) induced by the ionophore but may depend on subsequent signals which regulate endogenous growth factor production.  相似文献   

9.
The relationship between changes in the intracellular free Ca2+ concentration, [Ca2+]i, and the initiation of proliferation of murine B cells after the addition of mitogens and activators was studied. The effects of lipopolysaccharide (LPS), 12-O-tetradecanoyl phorbol-13-acetate (TPA), rabbit IgG antimouse Fab (IgG RAM Fab), and its F(ab')2 fragment (F(ab')2 anti-Fab) on the [Ca2+]i were measured using the fluorescent calcium indicator Fura-2. In parallel experiments, DNA and/or RNA synthesis were measured by assaying [3H]thymidine and/or [3H]uridine uptake. LPS stimulated a 20-120 X increase in the [3H]thymidine uptake, and a 3-7 X increase in [3H]uridine uptake without inducing any change in the [Ca2+]i. TPA induced a marginal increase in [3H]thymidine and [3H]uridine uptake, without effecting any change in the [Ca2+]i. In contrast, low doses of IgG RAM Fab produced a triphasic change in the [Ca2+]i, but had no effect on the [3H]thymidine or [3H]uridine uptake, even at much higher concentrations. Similarly, low doses of the F(ab')2 fragment induced sizable increases in the [Ca2+]i without affecting the [3H]nucleoside uptake. However, higher concentrations of F(ab')2 anti Fab increased the [3H]thymidine uptake and [3H]uridine uptake, while also increasing the [Ca2+]i. Significantly, pretreating the cells with TPA for 3 min virtually abolished the [Ca2+]i increase induced by IgG RAM Fab while simultaneously potentiating an increase in the IgG RAM Fab-induced [3H]thymidine uptake 85-fold. In the presence of TPA, IgG RAM Fab also induced a 2- to 30-fold increase in [3H]uridine uptake. Similarly, TPA virtually abolished the [Ca2+]i increase induced by the F(ab')2 anti-Fab fragment, yet it stimulated a F(ab')2 anti-Fab-induced uptake of [3H]thymidine and [3H]uridine by 120 and 10 times, respectively.  相似文献   

10.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

11.
12.
Understanding the cellular response to hypoxia may help elucidate the role of altered oxidation in neuronal death or abnormal cell function. In PC12 cells, 30 min of chemical hypoxia (i.e., KCN) reduced ATP concentrations by 92%, but diminished viability by only 10%. Ten minutes of hypoxia increased cytosolic free calcium ([Ca2+]i) 2.5-fold above control, but after 30 min of hypoxia, [Ca2+]i was slightly below that of nonhypoxic cells. Short periods of hypoxia also exaggerated the K(+)-induced elevation of [Ca2+]i, but by 30 min these ATP-depleted cells reestablished a calcium gradient that was equal to nonhypoxic, K(+)-depolarized cells. Thus, 30 min of severe ATP depletion left [Ca2+]i and viability relatively unaffected. Nerve growth factor caused slight, but significant, improvements in ATP and viability of hypoxic cells, but had no effect on [Ca2+]i. Although [Ca2+]i was equivalent in control and hypoxic cells after 30 or 60 min, hypoxia abolished the K(+)-stimulated elevation of [Ca2+]i. The nerve growth factor induction of c-fos, an indicator of the genomic response, was diminished by approximately 80%. Thus, hypoxic PC12 cells with greatly reduced ATP stores maintained normal [Ca2+]i, but their ability to respond to external stimulation was impaired. Further, the reduced oxidation that occurs in the brain in a variety of pathological conditions may interfere with the cellular response to stimulation and growth factors.  相似文献   

13.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

14.
Synthesis of acetylcholine receptors (AChR) can be affected by calcium, but the role played by this cation is controversial. The effect of changes in extracellular calcium, [Ca2+]o, on AChR synthesis was examined in a cultured mouse muscle cell line, BC3H-1. Reduction of [Ca2+]o for long periods (approximately 22 h) leads to a decrease in total surface AChR levels, a finding that is consistent with inhibition of AChR synthesis. A half-maximal reduction in surface AChR levels is observed when [Ca2+]o is decreased from 1.8 to approximately 5o microM. Under these conditions, however, total protein synthesis is also largely inhibited, suggesting that the effect of [Ca2+]o on AChR synthesis may be relatively non-specific. Increasing [Ca2+]i by adding the Ca2+ ionophore, A23187 (in the presence of 1.8 mM [Ca2+]o) also gives similar and significant reductions of both AChR and protein synthesis. Since the time course of changes in intracellular calcium [( Ca2+]i) produced by these manoeuvres is unknown, we examined the effects of briefer (1-6 h) reductions in [Ca2+]o and achieved a more specific reduction in AChR synthesis. A direct measurement of the changes in [Ca2+]i resulting from changes in [Ca2+]o was made using the fluorescent indicator Fura-2 and video fluorescence microscopy. Our results show that in BC3H-1 muscle cells the resting intracellular calcium decreases reversibly over 20 min when [Ca2+]o is decreased. We suggest that a reduction of [Ca2+]i produced by the lower [Ca2+]o underlies the reduction in AChR synthesis observed in these experiments.  相似文献   

15.
The role of the phosphatidylinositol second messenger system in luteal regulation has not been extensively studied, particularly in the primate. The objectives of this study were (1) to further characterize the response of the primate CL to the calcium ionophore A23187, in terms of intracellular free calcium concentrations ([Ca2+]i) and progesterone (P) production; and (2) to assess the effects of depleting, as well as elevating, available calcium on luteal P and prostaglandin (PG) production. The response to A23187, in terms of [Ca2+]i, was measured by fura-2 fluorescence microscopy of single small and large luteal cells. A23187 significantly increased [Ca2+]i in both cell types (p less than 0.01). P production (basal and hCG-stimulated) by dispersed primate luteal cells incubated for various times (1-8 h) with and without A23187 was measured. Treatment with A23187 rapidly (within 1-2 h) attenuated (p less than 0.05) the time-dependent increase in basal and hCG-stimulated P production. Luteal P and PG production following treatment with the calcium ionophore, ionomycin, alone or in combination with additional CaCl2, was also monitored. Treatment with ionomycin (p less than 0.01) and CaCl2 (p less than 0.01) inhibited luteal P production. In contrast, treatment with ionomycin stimulated (p less than 0.01) luteal PG production. To determine the effects of Ca2+ depletion on luteal function, P and PG production by cells incubated for 2 and 8 h in the absence and presence of the Ca(2+)-chelator EGTA was measured. Luteal production of both P and PG was inhibited by 8-h treatment with EGTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
ZHUDAN  NONGGAOHE 《Cell research》1993,3(2):157-164
Calcium plays a crucial role in the normal and abnomal cell metabolism.The role of calcium in the differentiation process of murine erythroleukemia cells(MELC)remains controversial.Here,based upon quantitative measurement of fluorescence in single cells,a method was developed to investigate the intracellular free calcium[Ca^2 ]i concentration and DNA contents simultaneously,by employing the fluorescent probe,fluo-3 acetoxymethyl ester and DNA dye Hoechst 33342.During MELC differentiation.[Ca^2 ]i concentration incresed.We also demonstrated that calcium ionophore,A23187,enhanced the HMB-induced MELC differentiation,while verapamil,an inhibitor of calcuim uptake,slightly reduced differentiation.These results suggested that an increase in the [Ca^2 ]i level was an essential step in HMBA-induced MELC differentiation.  相似文献   

17.
A rise in cytosolic free calcium ([Ca2+]i) is thought to be the principal mediator in vascular smooth muscle contraction. Quantitative changes of [Ca2+]i in response to two vasoconstrictor peptide hormones, angiotensin II and vasopressin, were directly measured in monolayers of adherent cultured rat aortic smooth muscle cells loaded with the fluorescent calcium indicator Quin 2. Angiotensin II induced rapid, concentration-dependent rises in [Ca2+]i from 1.53 +/- 0.27 X 10(-7) (n = 16) up to 1.2 X 10(-6) M, with ED50 of 0.45 X 10(-9) M, an effect which was blocked by the antagonist analogue [Sar1, Ala8]angiotensin II. Vasopressin also elicited transient rises in [Ca2+]i to peak levels of about 8 X 10(-7) M, with ED50 of 1.05 X 10(-9) M, and this response was completely abolished by a vasopressor antagonist. In calcium-free medium, basal [Ca2+]i levels fell to 0.92 +/- 0.24 X 10(-7) M (n = 4), and both hormones were still able to raise [Ca2+]i, although to a lesser extent. Readdition of extracellular calcium following the [Ca2+]i transient induced a second, slower [Ca2+]i rise. In calcium-containing medium, lanthanum ion (2 X 10(-5) M) reduced peptide-evoked [Ca2+]i rises to the values observed in calcium-free medium. Stimulation with each peptide completely desensitized the smooth muscle cells to a subsequent identical challenge, with little crosstachyphylaxis. Potassium ion (50 mM) only minimally affected [Ca2+]i levels. The calcium channel blocker nifedipine (10(-6) M) did not prevent the [Ca2+]i rises induced by angiotensin II, vasopressin, or potassium. These findings indicate that the two physiologically important vasoconstrictor hormones angiotensin II and vasopressin rapidly raise [Ca2+]i in cultured vascular smooth muscle cells, in part by mobilizing calcium from intracellular pools and in part through activation of receptor-operated calcium channels.  相似文献   

18.
In cultured endothelial cells harvested from human umbilical vein (HUVEC) or bovine aorta (BAEC) the 30 min incubation with calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) caused an increase in nitrite generation in HUVEC from basal 227 +/- 37 to 372 +/- 60 or to 325 +/- 33 pmoles per 10(6) cells, respectively, and in BAEC from basal 182 +/- 17 to 378 +/- 18 or to 423 +/- 66 pmoles per 106 cells (n = 6), respectively. Calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) next to 30 min incubation with BAEC increased release of 6-keto-PGF 1alpha from basal level of 9.4 +/- 1.8 to 96.2 +/- 5.1 or to 99.5 +/- 10.2 pmoles per 10(6) cells, respectively. The pretreatment with aspirin (300 microM) cut down this rise to 4.2 +/- 0.1 pmoles per 10(6) cells (n = 8). Basal cytoplasmic calcium levels, [Ca2+]i, in immortalised HUVEC cell line - ECV304, HUVEC and BAEC were 47.7 +/- 3.3 nM (n = 53), 68.3 +/- 5.0 nM (n = 30) and 53.1 +/- 3.0 nM (n = 15), respectively. In these cultured endothelial cells calcium ionophore A 23187 (0.1 microM) produced net maximum rise in [Ca2+]i by 157 +/-27 nM (n = 16)[ ECV304], by 107 +/- 58 nM (n=4) [HUVEC], and by 231.0 +/- 41.3 nM (n = 8) [BAEC], respectively, while ticlopidine (30 microM) produced net maximum rise in [Ca2+]i by 30.0 +/- 3.2 nM (n=9)[ECV304], 48.8 +/- 15.6 nM (n = 4)[HUVEC] and 28.4 +/- 5.4 nM (n = 8)[BAEC], respectively. Effect of ticlopidine on [Ca2+]i was not only weaker than that of calcium A 23187 but also its maximum appeared after a lag period that was 2 3 times longer than that for A23187. In ECV304 clopidogrel at concentrations of 10, 30 and 100 microM produced maximum increment of [Ca2+]i by 16.5 +/- 3.8 nM (n = 7), 47.0 +/- 6.9 nM (n = 8) and 67.2 +/- 8.3 nM (n = 8), respectively. Incubation of BAEC with A23187 (microM), ticlopidine or clopidogrel (100 microM) for 2 h did not influence viability of cultured endothelial cells. We claim that thienopyridines, independently of their delayed anti-platelet properties ex vivo do release NO and PGI2 from cultured endothelial cells in vitro. The above endothelial action of thienopyridines might be mediated by a rise in [Ca2+]i, however, this possibility has not been proved.  相似文献   

19.
Internal calcium levels of sperm loaded with Quin-2 in the absence or presence of exogenous calcium were 63 +/- 5 and 189 +/- 19 nM, respectively. These values were similar to those determined by Fura-2. Surprisingly, however, dye loaded sperm depleted of internal calcium did not take up calcium from the medium into the cytoplasm upon re-addition of this ion. Uptake was rapid and maximal, however, if these cells were exposed to the calcium ionophores A23187 or ionomycin. Increasing [Quin-2]i progressively lowered [Ca2+]i in spite of the presence of exogenous calcium during dye loading. This anomaly was not due to interference of the fluorophores with calcium uptake, since exogenous 45Ca2+ was taken up at the same rate and to the same extent by control and fluorophore loaded sperm. This 45Ca2+ uptake was mitochondrial and energy dependent. Also, inhibition of mitochondrial calcium accumulation during dye loading lowered [Ca2+]i to values similar to those observed for calcium depleted sperm. These results suggest an extreme impermeability of the sperm plasma membrane to direct calcium entry into the cytoplasm while substantial amounts of calcium entry occurs into the sperm mitochondria.  相似文献   

20.
This paper examines, in mouse spleen lymphocytes, the effect of anti-immunoglobulin (anti-Ig) on the cytoplasmic free calcium concentration, [Ca2+]i, measured with the fluorescent indicator quin2, and the relationship of [Ca2+]i to the capping of surface Ig. Anti-Ig causes a rapid rise of [Ca2+], which precedes capping. Assuming that only those 40-50% of the cells which can bind anti-Ig (the B cells) undergo a [Ca2+]i response, [Ca2+]i in those cells approaches 500 nM. It declines to resting levels over many minutes, roughly paralleling the formation of caps. Part of the [Ca2+]i signal is due to stimulated influx across the plasma membrane, since in Ca2+-free medium, anti-Ig gives a smaller and shorter [Ca2+]i rise. The amplitude of this reduced transient now varies inversely with quin2 content, as if some 0.25 mmol Ca per liter of cells was released into the cytoplasm from internal stores. These stores are probably sequestered in organelles since A23187 in Ca2+-free medium also causes a transient [Ca2+]i rise after which anti-Ig has no effect. These organelles seem not to be mitochondria because uncouplers have hardly any effect on [Ca2+]i. Though anti-Ig normally raises [Ca2+]i before causing capping, there seems to be no causal link between the two events. Cells in Ca2+-free medium whose stores have been emptied by A23187, still cap with anti-Ig even though there is no [Ca2+]i rise. Cells loaded with quin2 in the absence of external Ca2+ still cap anti-Ig normally even though their [Ca2+]i remains steady at below 30 nM, four times lower than normal resting [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号