首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Messenger RNA for peroxisome proliferator-activated receptor gamma (PPARgamma) has been found in granulosa cells, and its expression decreases after the LH surge. We determined which developmental stage of ovarian follicle expresses mRNA for PPARgamma and evaluated the impact of PPARgamma agonists on steroidogenesis. Ovaries were collected from immature eCG/hCG-treated rats at 0 (no eCG), 24, and 48 h post-eCG and 4 and 24 h post-hCG. Ovarian tissue was serially sectioned and processed for in situ hybridization to localize mRNA corresponding to PPARgamma, aromatase, and the LH receptor, and P450 side chain cleavage (P450SCC) and to determine whether apoptotic cells were present. During follicular development, there was no correlation between the expression of mRNAs for PPARgamma and aromatase or the presence of apoptotic cells, but a general inverse correlation was observed between the expression of PPARgamma mRNA and LH receptor mRNA. At 4 h post-hCG, follicles expressing P450SCC mRNA had lost expression of PPARgamma mRNA. This inverse pattern of expression between PPARgamma and P450SCC mRNAs was also observed 24 h post-hCG, with developing luteal tissue expressing high levels of P450SCC mRNA but little or no PPARgamma mRNA. To determine the impact of PPARgamma on steroidogenesis, granulosa cells were collected from ovaries 24 h post-eCG and cultured alone, with FSH alone, or with FSH in combination with the PPARgamma agonists ciglitazone or 15-deoxy-delta 12,14-prostaglandin J2 (PGJ2). Treatment of granulosa cells with PGJ2 stimulated basal progesterone secretion, whereas ciglitazone or PGJ2 had no significant effect on FSH-stimulated steroid production. These findings suggest that 1) PPARgamma may regulate genes involved with follicular differentiation and 2) the decline in PPARgamma in response to LH is important for ovulation and/or luteinization.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.  相似文献   

11.
The peroxisome proliferator-activated receptor (PPAR) family was discovered from an orphan nuclear receptor approach, and thereafter, three subtypes were identified, namely PPARalpha, PPARbeta or PPARgamma and PPARgamma. The two former seem to regulate lipid homeostasis, whereas the latter is involved, among others, in glucose homeostasis and adipocyte differentiation. PPARs were pharmacologically characterised first using peroxisome proliferators such as clofibrates, which demonstrate moderate affinity (efficiency at micromolar concentrations) and low PPARalpha/delta versus PPARgamma specificity. Hence, several laboratories have started the search for potent and subtype-specific natural PPAR activators. In this respect, prostaglandin (PG)-related compounds were identified as good PPARgamma agonists with varying specificity, the most notable PPAR ligand being 15-deoxy-Delta12-14-PGJ2 (15d-PGJ2). Recently, an oxidized phosphatidylcholine was identified as a potent alternative (patho)physiological natural ligand of PPARgamma. In the present review, we discuss the different PPARgamma-dependent and -independent biological effects of the PG PPARgamma ligands and the concern about their low potency in molecular models as compared with thiazolidinediones (TZDs), a family of potent (nanomolar) synthetic PPARgamma ligands. Finally, the oxidized lipids are presented as a novel and interesting alternative for discovering potent PPARgamma activators in order to understand more in details the implications of PPARgamma in various pathophysiological conditions.  相似文献   

12.
13.
14.
The role of the peroxisome proliferator-activated receptor-gamma (PPARgamma) in cell differentiation, cell-cycle arrest, and apoptosis has attracted increasing attention. We have recently demonstrated that PPARgamma ligands-troglitazone (TGZ) induced apoptosis in lung cancer cells. In this report, we further studied the role of ERK1/2 in lung cancer cells treated by TGZ. The result demonstrated that TGZ induced PPARgamma and ERK1/2 accumulation in the nucleus, in which the co-localization of both proteins was found. The activation of ERK1/2 resulted in apoptosis via a mitochondrial pathway. Both PPARgamma siRNA and U0126, a specific inhibitor of ERK1/2, were able to block these effects of TGZ, suggesting that apoptosis induced by TGZ was PPARgamma and ERK1/2 dependent. Inhibition of ERK1/2 by U0126 also led to a significant decrease in the level of PPARgamma, indicating a positive cross-talk between PPARgamma and ERK1/2 or an auto-regulatory feedback mechanism to amplify the effect of ERK1/2 on cell growth arrest and apoptosis. In addition to ERK1/2, TGZ also activated Akt. Interestingly, inhibition of ERK1/2 prevented the activation of Akt whereas the suppression of Akt had no effect on ERK1/2, suggesting that Akt was not necessary for TGZ-PPARgamma-ERK pathway. However, the inhibition of Akt promoted the release of cytochrome c, suggesting the activation of Akt may have a negative effect on apoptosis induced by TGZ. In conclusion, our study has demonstrated that TGZ, a synthetic PPARgamma ligand, induced apoptosis in NCI-H23 lung cancer cells via a mitochondrial pathway and this pathway was PPARgamma and ERK1/2 dependent.  相似文献   

15.
16.
Conjugated linoleic acid (CLA), a naturally occurring substance in food sources, occurs as mixtures of positional and geometrical isomers of octadecadienoate (18:2), and may inhibit colon tumorigenesis. It has been hypothesized that CLA can modulate cell proliferation and differentiation through the activation of peroxisome proliferator-activated receptors (PPARs), among which PPARgamma is involved in growth inhibition of transformed cells. The aim of the present study was to investigate whether the antiproliferative effects of CLA are mediated by its interaction with PPARgamma and APC/beta-catenin signalling pathway in human colon cancer cells. In CLA-treated caco-2 cells we found a remarkable increase in the expression of PPARgamma, which translocated into the nucleus, while PPARalpha and beta/delta protein levels were not affected. GW259662, a well known PPARgamma antagonist, blocked the increase in PPARgamma protein rate and abrogated some biological effects of CLA, as it restored the proliferative capability of the cells and ERK1/2 phosphorylation level. We demonstrated that CLA treatment determined the down-regulation of APC and c-myc proteins, but in this case the administration of the antagonist was not able to revert CLA effects. Furthermore, CLA induced a reorganization of E-cadherin and beta-catenin, as well as a redistribution of actin and tubulin filaments. Our data suggest that CLA may regulate PPARgamma expression by selectively acting as an agonist; however, the discrepancies in PPARgamma antagonist efficacy suggest the involvement of other pathways, independent of PPARgamma, in CLA antiproliferative activity.  相似文献   

17.
18.
19.
To investigate the role of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte formation within the skeletal muscle of beef cattle, fibroblast-like cells were isolated from the longissimus muscle of cattle and cultured with activators of murine PPARgammaA thiazolidinedione T-174, which is a specific ligand for PPARgamma, stimulated adipose differentiation (evaluated by counting differentiated adipocytes under microscopic observation) in a dose-dependent fashion. A peroxisome proliferator Wy14,643 which strongly activates the alpha isoform of murine PPAR also stimulated differentiation but its potency was weaker than that of T-174. Unexpectedly, 15-deoxy-Delta12,14-prostaglandin J2, which is believed to be an endogenous ligand for PPARgamma, could not induce adipose differentiation in doses which have been found to be effective on rodent cells. Immunoblotting analysis confirmed the significant expression of PPARgamma protein in fibroblast-like cell cultures prepared from bovine skeletal muscle. In conclusion, bovine skeletal muscle contains adipose precursor cells expressing functionally active PPARgamma.  相似文献   

20.
The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号