首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

2.
The polyamine path of Neurospora crassa originates with the decarboxylation of ornithine to form putrescine (1,4-diaminobutane). Putrescine acquires one or two aminopropyl groups to form spermidine or spermine, respectively. We isolated an ornithine decarboxylase-deficient mutant and showed the mutation to be allelic with two previously isolated polyamine-requiring mutants. We here name the locus spe-1. The three spe-1 mutants form little or no polyamines and grow well on medium supplemented with putrescine, spermidine, or spermine. Cadaverine (1,5-diaminopentane), a putrescine analog, supports very slow growth of spe-1 mutants. An arginase-deficient mutant (aga) can be deprived of ornithine by growth in the presence of arginine, because arginine feedback inhibits ornithine synthesis. Like spe-1 cultures, the ornithine-deprived aga culture failed to make the normal polyamines. However, unlike spe-1 cultures, it had highly derepressed ornithine decarboxylase activity and contained cadaverine and aminopropylcadaverine (a spermidine analog), especially when lysine was added to cells. Moreover, the ornithine-deprived aga culture was capable of indefinite growth. It is likely that the continued growth is due to the presence of cadaverine and its derivatives and that ornithine decarboxylase is responsible for cadaverine synthesis from lysine. In keeping with this, an inefficient lysine decarboxylase activity (Km greater than 20 mM) was detectable in N. crassa. It varied in constant ratio with ornithine decarboxylase activity and was wholly absent in the spe-1 mutants.  相似文献   

3.
Arginine decarboxylase (arginine carboxy-lyase EC 4.1.1.19) of Cucumis sativus cotyledons, has a pH optimum of 8.3 and a temperature optimum of 40°. Among the various plant hormones administered to excised cotyledons in culture, benzyladenine and its riboside were most effective in increasing the arginine decarboxylase activity and putrescine content. The enzyme activity and putrescine content were significantly increased on acid feeding of the cotyledons and decreased by KCl treatment. The KCl effect could be only partially reversed by benzyladenine. Abscisic acid inhibited cotyledon growth and also reduced arginine decarboxylase and putrescine levels. This effect was overcome by cytokinins. The half life of the enzyme using cycloheximide was 3.7 hr. Dibutyryl cyclic AMP and 5′-AMP also marginally stimulated the enzyme and putrescine levels. Mixing experiments indicate that there is neither a non-dialysable activator nor inhibitor of the enzyme.  相似文献   

4.
Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine.  相似文献   

5.
Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells.  相似文献   

6.
Embryogenic cultured cells of Daucus carota have been shown to synthesize putrescine from exogenously supplied [14C]arginine at twice the rate of control nonembryogenic cells. In the present paper, the activity of arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19), an important enzyme in the synthesis of putrescine, was assayed and also found to be elevated by as much as 2-fold in embryogenic cells. This difference between embryogenic and nonembryogenic cells was observed as early as 6 hours after the induction of embryogenesis and appeared not to result from the presence of a diffusible inhibitor or activator. It seemed to be dependent upon concomitant RNA and protein synthesis, as judged using 6-methyl-purine and cycloheximide. After cycloheximide addition to the culture medium, arginine decarboxylase activity declined with a half-time of about 30 minutes in both embryogenic and nonembryogenic cells. It is suggested that elevated arginine decarboxylase activity is involved in the mechanism leading to elevated putrescine levels in these cells and hence may play a role in the embryogenic process.  相似文献   

7.
K M Yao  W F Fong    S F Ng 《The Biochemical journal》1984,222(3):679-684
The putrescine-biosynthesis pathway in Tetrahymena thermophila was delineated by studying crude extracts prepared from exponentially growing cultures. A pyridoxal phosphate-stimulated ornithine decarboxylase activity competitively inhibited by putrescine was detected. CO2 was also liberated from L-arginine, but analyses by t.l.c. and enzyme studies suggested that the activity was not due to arginine decarboxylase, nor could enzyme activities converting agmatine into putrescine be detected. We conclude that the decarboxylation of L-ornithine is probably the only major route for putrescine biosynthesis in this organism during exponential growth.  相似文献   

8.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

9.
Some cultures of Escherichia coli BGA8, a mutant unable to synthesize putrescine, showed a change of behaviour and could grow almost equally well in either the absence or the presence of polyamines after repeated periods of polyamine starvation. Experiments in vivo with radioactive precursors showed that the bacteria which evaded the polyamine requirement had recovered their ability to synthesize putrescine from glucose or glutamic acid, but not from ornithine or arginine. These results are in agreement with the fact that the polyamine-independent cells were still deficient in the enzymes ornithine decarboxylase and agmatinase. Our findings seem to indicate the existence of a new pathway synthesize putrescine which does not involve ornithine or arginine as intermediates.  相似文献   

10.
Putrescine and polyamines are produced by two alternative pathways in plants. One pathway starts with the enzyme arginine decarboxylase; the other with ornithine decarboxylase. The authors developed an in vivo screening strategy to identify mutants with low levels of arginine decarboxylase activity. The screen requires both a primary screen of the M2 generation and a secondary screen of the M3 generation. The method used was to screen 15 000 EMS-mutagenized M2 seedlings for low levels of arginine decarboxylase (ADC) activity and identified seven mutants that fall into two complementation groups. These mutants have from 20% to 50% of wild-type enzyme activity. Morphological alterations common among the mutants include increased levels of lateral root branching. The authors obtained a double mutant combining the alleles with the lowest activities from the two complementation groups; this has lower ADC enzyme activity and putrescine levels than either of the single mutants. The double mutant has highly kinked roots that form a tight cluster; it also has narrower leaves, sepals, and petals than either single mutant or wild-type, and delayed flowering. These results suggest there may be more than one ADC gene in Arabidopsis, and that ADC and polyamine levels play roles in root meristem function and in lateral growth of leaf-homolog organs.  相似文献   

11.
The relative contributions made by the l-arginine/agmatine/N-carbamoylputrescine/putrescine and the l-ornithine/putrescine pathways to hyoscyamine formation have been investigated in a transformed root culture of Datura stramonium. The activity of either arginine decarboxylase (EC 4.1.1.19) or ornithine decarboxylase (EC 4.1.1.17) was suppressed in vivo by using the specific irreversible inhibitors of these activities, dl--difluoromethylarginine or dl--difluoromethylornithine, respectively. It was found that suppression of arginine decarboxylase resulted in a severe decrease in free and conjugated putrescine and in the putrescine-derived intermediates of hyoscyamine biosynthesis. In contrast, the suppression of ornithine decarboxylase activity stimulated an elevation of arginine decarboxylase and minimal loss of metabolites from the amine and alkaloid pools. The stimulation of arginine decarboxylase was not, however, sufficient to maintain the same potential rate of putrescine biosynthesis as in control tissue. It is concluded that (i) in Datura the two routes by which putrescine may be formed do not act in isolation from one another, (ii) arginine decarboxylase is the more important activity for hyoscyamine formation, and (iii) the formation of polyamines is favoured over the biosynthesis of tropane alkaloids. An interaction between putrescine metabolism and other amines is also indicated from a stimulation of tyramine accumulation seen at high levels of dl--difluoromethylornithine.Abbreviations ADC arginine decarboxylase - DFMA dl--dif-luoromethylarginine - DFMO dl--difluoromethylornithine - MPO N-methylputrescine oxidase - ODC ornithine decarboxylase - PMT putrescine N-methyltransferase We are indebted to Dr. E.W.H. Bohme of Merrell Dow Research Laboratories (Cincinnati, Ohio, USA) for kind gifts of DFMO and DFMA and to Dr. M.J.C. Rhodes for helpful advice and discussion.  相似文献   

12.
 Jasmonic acid (JA) and its methyl ester (MeJA) at concentrations ranging from 0.001 to 10 μM provoked large increases in methylputrescine levels in normal and hairy roots of Hyoscyamus muticus L.; generally, levels of free putrescine and perchloric acid-soluble conjugated putrescine, spermidine and spermine also increased dramatically. More 14C-putrescine was formed when hairy roots were incubated with labelled ornithine than with arginine; conjugated 14C-putrescine was also rapidly formed. In accord with these results, ornithine decarboxylase (EC 4.1.1.17) activity was higher than that of arginine decarboxylase (EC 4.1.1.19), and MeJA enhanced these activities about two- and fourfold, respectively. Although treatment of root cultures with jasmonates enhanced precursor (putrescine, methylputrescine) levels and accumulation of secondary metabolites such as acid-soluble conjugated di-/polyamines, it provoked only modest increases in tropane alkaloid tissue levels. Received: 24 March 1999 / Revision received: 5 October 1999 / Accepted: 26 October 1999  相似文献   

13.
Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase.  相似文献   

14.
Polyamine synthesis in maize cell lines   总被引:1,自引:0,他引:1       下载免费PDF全文
Hiatt A 《Plant physiology》1989,90(4):1378-1381
Uptake of [14C]putrescine, [14C]arginine, and [14C]ornithine was measured in five separate callus cell lines of Zea mays. Each precursor was rapidly taken into the intracellular pool in each culture where, on the average, 25 to 50% of the total putrescine was found in a conjugated form, detected after acid hydrolysis. Half-maximal labeling of each culture was achieved in less than 1 minute. Within this time frame of precursor incorporation, only putrescine derived from arginine was conjugated, indicating that putrescine pools derived from arginine may initially be sequestered from ornithine-derived putrescine. The decarboxylase activities were measured in each culture after addition of exogenous polyamine to the growth medium to assess differential regulation of the decarboxylases. Arginine and ornithine decarboxylase activities were augmented by added polyamine, the effect on arginine decarboxylase being eightfold greater than on ornithine decarboxylase. Levels of extractable ornithine decarboxylase were consistently 15- to 100-fold higher than arginine decarboxylase, depending on the titer of extracellular polyamine. Taken as whole the results support the idea that there are distinct populations of polyamine that are initially sequestered after the decarboxylase reactions and that give rise to separate end products and possibly have separate functions.  相似文献   

15.
Ethylene initiates the ripening and senescence of climacteric fruit, whereas polyamines have been considered as senescence inhibitors. Ethylene and polyamine biosynthetic pathways share S-adenosylmethionine as a common intermediate. The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception, on ethylene and polyamine metabolism and associated gene expression was investigated during ripening of the model climacteric fruit, tomato (Solanum lycopersicum L.), to determine whether its effect could be via polyamines as well as through a direct effect on ethylene. 1-MCP delayed ripening for 8 d compared with control fruit, similarly delaying ethylene production and the expression of 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase and some ethylene receptor genes, but not that of ACC oxidase. The expression of ethylene receptor genes returned as ripening was reinitiated. Free putrescine contents remained low while ripening was inhibited by 1-MCP, but increased when the fruit started to ripen; bound putrescine contents were lower. The activity of the putrescine biosynthetic enzyme, arginine decarboxylase, was higher in 1-MCP-treated fruit. Activity of S-adenosylmethionine-decarboxylase peaked at the same time as putrescine levels in control and treated fruit. Gene expression for arginine decarboxylase peaked early in non-treated fruit and coincident with the delayed peak in putrescine in treated fruit. A coincident peak in the gene expression for arginase, S-adenosylmethionine-decarboxylase, and spermidine and spermine synthases was also seen in treated fruit. No effect of treatment on ornithine decarboxylase activity was detected. Polyamines are thus not directly associated with a delay in tomato fruit ripening, but may prolong the fully-ripe stage before the fruit tissues undergo senescence.  相似文献   

16.
It is probable that one of the functions of potassium in theplant is to maintain the ionic balance of the cell, and it hasbeen suggested that in potassium deficiency, the productionof organic bases such as putrescine serves to balance an excessof organic acids which might occur under these conditions. Themechanism for the increase in activity of the enzymes in thepathway leading to the formation of putrescine in potassium-deficientbarley leaves was studied, therefore, by investigating the effectof artificially increasing the acidity by feeding inorganicacids to the roots of barley seedlings. Feeding hydrochloric acid caused significant increases in L-argininecarboxy-lase (arginine decarboxylase) and N-carbamylputrescineamidohydrolase activity in the leaves when expressed on thebasis of fresh weight, dry weight, total nitrogen, or proteinnitrogen, and a similar increase was induced on feeding sulphuricacid. Acid feeding did not cause a significant change in potassiumcontent on a dry-weight basis. The arginine, agmatine, and putrescinecontents were increased in the acid-fed leaves. The possibilitythat the increased arginine content in the acid-fed leaves ledto an increase in arginine decarboxylase by enzyme inductionwas investigated by feeding arginine through the roots to barleyseedlings. No increase in decarboxylase activity could be detected.  相似文献   

17.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   

18.
4-Aminobutyrate aminotransferase (GABAT) from Pseudomonas aeruginosa was purified 64-fold to apparent electrophoretic homogeneity from cells grown with 4-aminobutyrate as the only source of carbon and nitrogen. Purified GABAT catalyzed the transamination of 4-aminobutyrate, N2-acetyl-L-ornithine, L-ornithine, putrescine, L-lysine, and cadaverine with 2-oxoglutarate (listed in order of decreasing activity). The enzyme is induced in cells grown on 4-guanidinobutyrate, 4-aminobutyrate, or putrescine as the only carbon and nitrogen source. Cells grown on arginine or on glutamate contained low levels of the enzyme. The regulation of the synthesis of GABAT as well as the properties of the mutant with an inactive N2-acetyl-L-ornithin 5-aminotransferase suggest that GABAT functions in the biosynthesis of arginine by convertine N2-acetyl-L-glutamate 5-semialdehyde to N2-acetyl-Lornithine as well as in catabolic reactions during growth on putrescine or 4-guanidinobutyrate but not during growth on arginine.  相似文献   

19.
Spermidine was detected as the major polyamine of Ancylostoma ceylanicum as well as Nippostrongylus brasiliensis. Spermine was present in lower amounts whereas the level of putrescine was even less. S-Adenosylmethionine decarboxylase, a rate-limiting enzyme in the biosynthetic pathway of polyamines, was demonstrated at low levels in both parasites. Decarboxylation of lysine and arginine was absent or negligible and that of ornithine questionable, as the enzyme activity was not inhibited by alpha-difluoromethylornithine while RMI 71,645, an irreversible inhibitor of ornithine aminotransferase, strongly inhibited the liberation of CO2 from ornithine. High activity of ornithine aminotransferase was observed in both the parasites and may interfere with the assay for ornithine decarboxylase. Adults of A. ceylanicum were found to rapidly take up spermidine and spermine from incubation medium while uptake of putrescine was very low. These results indicate that hookworms depend on uptake and interconversion rather than de novo synthesis for their polyamine requirement.  相似文献   

20.
Polyamines are known to play an essential role in cell growth and differentiation. In animals, putrescine is mainly synthesized from ornithine by ornithine decarboxylase (ODC). In higher plants and in bacteria putrescine can also be synthesized from arginine by arginine decarboxylase (ADC). In this paper we report the presence of significant levels of ADC activity in crude extracts of Trypanosoma cruzi, RA strain epimastigotes. ADC activity was detected during a very narrow time range, corresponding to the early logarithmic growth phase. This activity was inhibited by DL-alpha-difluoromethylarginine, a specific irreversible inhibitor of ADC and activated by DL-alpha-difluoromethylornithine, a specific irreversible inhibitor of ODC. The reaction showed an absolute requirement for pyridoxal phosphate, dithiothreitol and Mg++. The enzyme half life was about 10 hrs., showed maximum activity at pH 7.9 and a Km for arginine of 5 mM. ADC activity was stimulated by fetal-calf-serum and inhibited by spermine, probably through a negative feed-back regulation on the levels of the enzyme. ODC activity was not detected. These results confirm our previous reports on the capability of T. cruzi, RA strain epimastigotes to synthesize putrescine from arginine via agmatine by ADC and point out differences on polyamine metabolism between the parasite and the mammalian host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号