首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Different amino acid residues in cardiac sarcolemmal vesicles were modified by incubation with various chemical reagents. The effects of these modifications on sarcolemmal Na+–Ca2+ exchange were examined. Dithiothreitol, an agent that maintains sulfur-containing residues in a reduced state, caused a time- and concentration-dependent decrease in Na+–Ca2+ exchange. The treatment with dithiothreitol resulted in a decrease inV max values but did not alter theK m for Ca2+ for the Na2+–Ca2+ exchange reaction. If Na+ replaced K+ as the ion present during the modification of sarcolemmal membranes with dithiothreitol, there was substantially less of an inhibitor effect on Na+–Ca2+ exchange. Similar results were obtained with reduced glutathione, a reagent that also maintains sulfur-containing residues in a reduced state. Two sulfhydryl modifying reagents, methylmethanethiosulfonate and N-ethylmaleimide, were capable of altering Na+–Ca2+ exchange, and the type of ion present during modification significantly affected the extent of this alteration. Almost all of the chemical reagents investigated that modified other amino acid resides (carboxyl, lysyl, histidyl, tyrosyl, tryptophanyl, arginyl and hydroxyl) had the capacity to alter Na+–Ca2+ exchange after preincubation with the sarcolemmal membrane vesicles. However, the sulfur residue-modifying reagents were the only compounds to exhibit significant differences in their action on Na+–Ca2+ exchange, depending on whether Na+ or K+ was present in the preincubation modification medium. The tryptophan modifier, N-bromosuccinimide, was the sole reagent that elicited a substantial increase in membrane permeability. The evidence is consistent with the hypothesis that sulfurcontaining residues interact with a Na+-binding site for Na+–Ca2+ exchange in cardiac sarcolemmal vesicles.  相似文献   

2.
Summary We have previously partially purified the sarcolemmal Na+–Ca2+ exchange protein and produced rabbit polyclonal antibodies to the exchanger (Philipson, K. D., Longoni, S., Ward, R. 1988.Biochim. Biophys.Acta 945:298–306). We now describe the generation of three stable murine hybridoma lines which secrete monoclonal antibodies (MAb's) to the exchanger. These MAb's immunoprecipitate 50–75% of solubilized Na+–Ca2+ exchange activity. The MAb's appear to be reactive with native conformation-dependent expitopes on the Na+–Ca2+ exchanger since they do not react on immunoblots. An indirect method was used to identify Na+–Ca2+ exchange proteins. A column containing Na+–Ca2+ exchanger immobilized by MAb's was used to affinity purify the rabbit polyclonal antibody. The affinity-purified polyclonal antibody reacted with proteinsof, apparent molecular weights of 70, 120, and 160 kDa on immunoblots of sarcolemma. The data provide strong support for our prevous association of Na+–Ca2+ exchange with these proteins.  相似文献   

3.
The signal transduction pathway for insulin-mediated activation of sarcolemmal Na+–Ca2+ exchange was examined. Insulin stimulated Na+–Ca2+ exchanger activity in a dose-dependent manner, with the EC50 being about 0.7 U/l. The insulin effect was blocked by the protein kinase inhibitor, staurosporine, indicating possible involvement of a protein kinase in insulin action. Also, the relationship between the insulin effect and activation of a G protein, was examined by testing the effects of 5 guanylyl imidodiphosphate (Gpp(NH))p) on Na+–Ca2+ exchange in, the presence and absence of insulin. When exchanger activity was assayed at a calcium concentration of 40 M, insulin alone had no effect whereas ATP and Gpp(NH)p increased exchanger activity. However, insulin responsiveness was restored in vesicles preloaded with either ATP or Gpp(NH)p, suggesting that insulin may act through a combination of G protein coupling and protein phosphorylation to enhance Na+–Ca2+ exchanger activity. We conclude that calcium overload in the diabetic heart may involve a defect in acute activation of the exchanger by insulin.  相似文献   

4.
Procedures were developed for measurement of Na+/Ca2+ exchange in resealed plasma membrane vesicles from postmortem human brain. The vesicle preparation method permits use of stored frozen tissue with minimal processing required prior to freezing. Vesicles prepared in this manner transport Ca2+ in the presence of a Na+ gradient. The kinetic characteristics of the Na+/Ca2+ exchange process were determined in membrane vesicles isolated from hippocampus and cortex. The Kact for Ca2+ was estimated to be 32 M for hippocampal and 17 M for cortical tissue. The maximal rate of Ca2+ uptake (Vmax) was 3.5 nmol/mg protein/15 sec and 3.3 nmol/mg protein/15 sec for hippocampal and cortical tissue, respectively. Exchange activity was dependent on the Na+ gradient, and was optimal in the high pH range. Therefore, membranes in which Na+-dependent o Ca2+ transport activity is preserved can be isolated from postmortem human brain and could be used to determine the influence of pathological conditions on this transport system.  相似文献   

5.
The effect of external and internal K+ on Nao+-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+?Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Nao+-dependent Ca2+ efflux component. Internal K+ activates the Na+?Ca2+ exchange with low affinity (K12 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Nai+, thus ruling out a displacement of Nai+ from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+?Ca2+ exchange.  相似文献   

6.
Summary Cardiac sarcolemma (SL) vesicles were subjected to irradiation inactivation-target sizing analyses and gel permeation high performance liquid chromatography (HPLC) to ascertain the weight range of native Na–Ca exchange. Frozen SL vesicle preparations were irradiated by electron bombardment and assayed for Na–Ca exchange activity. When applied to classical target sizing theory, the results yielded a minimum molecular weight (M r) of approximately 226,000±20,000sd (n=6). SL vesicle proteins were solubilized in 6% sodium cholate in the presence of exogenous phospholipid and fractionated by size on a TSK 30XL HPLC column. Eluted proteins were mixed 11 with mobile phase buffer containing 50mg/ml soybean phospholipid and reconstituted by detergent dilution. The resulting proteoliposomes were assayed for Na–Ca exchange activity. Na–Ca exchange activity eluted in early fractions containing larger proteins as revealed by SDS-PAGE. Recovery of total protein and Na–Ca exchange activity were 91±7 and 68±11%, respectively. In the peak fraction, Na–Ca exchange specific activity increased two-to threefold compared to reconstituted controls. Compared to the elution profile of protein standards under identical column conditions, sodium cholate solubilized exchange activity had a minimumM r of 224,000 Da. Specific45Ca2+-binding SL proteins withM r of 234,000, 112,000, and 90,000 Da were detected by autoradiography of proteins transferred electrophoretically to nitrocellulose.These data suggest that native cardiac Na–Ca exchange is approximately 225,000 Da or larger. The exact identification and purification of cardiac Na–Ca exchange protein(s) remains incomplete.  相似文献   

7.
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.  相似文献   

8.
A rise in the extracellular concentration of glucose from an intermediate to a high value changes the burst pattern of electrical activity of the pancreatic B-cell into a continuous firing, and yet activates the B-cell Ca2+-sensitive K+ permeability. The hypothesis that glucose exerts such effects by inhibiting the Na+, K+-ATPase was investigated. Ouabain (1 mM) mimicked the effect of 16.7 mM glucose in stimulating 86Rb, 45Ca outflow and insulin release from perifused rat pancreatic islets first exposed to 8.3 mM glucose. The stimulation by ouabain of 86Rb outflow was reduced in the absence of extracellular Ca2+ and almost completely abolished in the presence of quinine, and inhibitor of the Ca2+-sensitive K+ permeability. In the presence of ouabain, a rise in the glucose concentration from 8.3 to 16.7 mM failed to stimulate 86Rb outflow. However, the rise in the glucose concentration failed to inhibit 86Rb influx in islet cells, while ouabain dramatically reduced 86Rb influx whether in the presence of 8.3 or 16.7 mM glucose. These findings do not suggest that inhibition of the B-cell Na+, K+-ATPase represents the mechanism by which glucose in high concentration stimulates 86Rb outflow and induces continuous electrical activity in the B-cell.  相似文献   

9.
In intact mitochondria supplemented with succinate or -hydroxybutyrate, the rates of oxygen consumption induced by beauvericin followed the ionic selectivity pattern: Na+>Rb+, Cs+, K+, Li+.When the respiratory substrate is glutamate plus malate in the absence of phosphate, the selectivity pattern is: K+>Rb+>Cs+>Li+>Na+.When the media are supplemented with phosphate, the Na+/K+ discrimination of beauvericin is considerably modified with all the respiratory substrates, being K+>Na+ with succinate and Na+>K+ with glutamate plus malate, whereas no significant ionic selectivity differences were obtained with -hydroxybutyrate.The respiratory control induced by oligomycin in submitochondrial particles is released by beauvericin only in the presence of a nigericin-like carboxylic antibiotic and an alkali metal cation, being far more effective in K+ than in Na+.This selectivity is maintained regardless of whether NADH or succinate is used as a respiratory substrate.Release of respiratory control can also be obtained with a combination of beauvericin and NH4Cl.This information indicates that the ionic selectivity pattern obtained with beauvericin in mitochondrial membranes is an intrinsic property of the antibiotic which, however, can be significantly modified by factors such as the nature of the translocatable substrate anion or other anionic species, as well as the possible operation of a Na+/H+ antiporter existent in the membrane.  相似文献   

10.
Summary We investigated intracellular pH (pH i ) regulation in cultured human ciliary muscle cells by means of the pH-sensitive absorbance of 5(and 6)-carboxy-4,5-dimethylfluorescein (CDMF). The steady-state pH i was 7.09±0.04 (n = 12) in CO2/ HCO 3 -buffered and 6.86±0.03 (n = 12) in HEPES-buffered solution. Removal of extracellular sodium for 6 min acidified the cells by 1.11±0.06 pH units (n = 12) in the presence of CO2/ HCO 3 and by 0.91±0.05 pH units (n = 8) in its absence. Readdition of external sodium resulted in a rapid pH i recovery, which was almost completely amiloride-sensitive in the absence of CO2/ HCO 3 but only slightly influenced by amiloride in its presence. Application of DIDS under steady-state conditions significantly acidified the ciliary muscle cells by 0.25±0.02 (n = 4) in 6 min, while amiloride had no effect. The pH i recovery after an intracellular acid load was completely dependent on extracellular sodium. In HEPES-buffered solution the pH i recovery was almost completely mediated by Na+/H+ exchange, since it was blocked by amiloride (1 mmol/liter). In contrast, a marked amilorideinsensitive pH i recovery was observed in CO2/HCO 3 -buffered solution which was mediated by chloride-independent and chloride-dependent Na+ HCO 3 cotransport. This recovery, inhibited by DIDS (0.2 mmol/liter). was also observed if the cells were preincubated in chloride-free solution for 4 hr. Analysis of the sodium dependence of the pH i recovery after NH4Cl prepulse revealed V max = 0.57 pH units/min, K m= 39.7 mmol/liter extracellular sodium for the amiloride-sensitive component and V max = 0.19 pH units/min, K m= 14.3 mmol/liter extracellular sodium for the arniloride-insensitive component. We conclude that Na+/H+ exchange and chloride-independent and chloride-dependent Na+HCO 3 cotransport are involved in the pH i regulation of cultured human ciliary muscle cells.The expert technical assistance of Astrid Krolik is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft grant DFG Wi 328/11.  相似文献   

11.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

12.
We describe the activation of a K+ current and inhibition of a Cl current by a cyanoguanidine activator of ATP-sensitive K+ channels (KATP) in the smooth muscle cell line A10. The efficacy of U83757, an analogue of pinacidil, as an activator of KATP was confirmed in single channel experiments on isolated ventricular myocytes. The effects of U83757 were examined in the clonal smooth muscle cell line A10 using voltage-sensitive dyes and digital fluorescent imaging techniques. Exposure of A10 cells to U83757 (10 nm to 1 m) produced a rapid membrane hyperpolarization as monitored by the membrane potential-sensitive dye bis-oxonol ([diBAC4(3)], 5 m). The U83757induced hyperpolarization was antagonized by glyburide and tetrapropylammonium (TPrA) but not by tetraethlylammonium (TEA) or charybdotoxin (ChTX). The molecular basis of the observed hyperpolarization was studied in whole-cell, voltage-clamp experiments. Exposure of voltage-clamped cells to U83757 (300 nm to 300 m) produced a hyperpolarizing shift in the zero current potential; however, the hyperpolarizing shift in reversal potential was associated with either an increase or decrease in membrane conductance. In solutions where E k=–82 mV and E Cl=0 mV, the reversal potential of the U83757-sensitive current was approximately –70 mV in those experiments where an increase in membrane conductance was observed. In experiments in which a decrease in conductance was observed, the reversal potential of the U83757-sensitive current was approximately 0 mV, suggesting that U83757 might be acting as a Cl channel blocker as well as a K+ channel opener. In experiments in which Cl current activation was specifically brought about by cellular swelling and performed in solutions where Cl was the major permeant ion, U83757 (300 nm to 300 m) produced a dose-dependent current inhibition. Taken together these results (i) demonstrate the presence of a K+-selective current which is sensitive to KATP channel openers in A10 cells and (ii) indicate that the hyperpolarizing effects of K+ channel openers in vascular smooth muscle may be due to both the inhibition of Cl currents as well as the activation of a K+-selective current.This work was supported in part by the following grants: PHS P01 DK44840 and GM36823 (D.J.N.). J.C.M. is an Established Investigator of the American Heart Association.  相似文献   

13.
The effects of isolated platelet surface membranes on DNA synthesis and proliferation of bovine coronary artery smooth muscle cells (SMC) were studied. Platelet membranes were very potent mitogens for SMC. The potency was about 10-fold higher than the maximum effects of platelet-derived growth factor-BB (PDGF). Platelet membrane-induced mitogenesis was inhibited by rapamycin, wortmannin or heating for 15 min at 70 degrees C but not by the PDGF receptor antagonist SCH 13.929 or by neutralizing PDGF antibodies. Only a partial (30%) inhibition was seen with PD 98059. In contrast, PDGF-induced SMC mitogenesis was heat-stable but sensitive to SCH 13. 929, PDGF antibodies, and PD 98059. These findings provide evidence for a novel mechanism for platelet-induced SMC proliferation that is independent of PDGF secretion. Platelet membranes, attached to or incorporated into the vessel wall, could maintain sustained SMC proliferation following injury.  相似文献   

14.
Cheng J  Zeng XR  Li PY  Lu TT  Tan XQ  Wen J  Yang Y 《生理学报》2012,64(2):121-128
The aim of the present study was to study the effect of β-estradiol (β-E(2)) on the large-conductance Ca(2+)-activated potassium (BK(Ca)) channel in mesenteric artery smooth muscle cells (SMCs). The mesenteric arteries were obtained from post-menopause female patients with abdominal surgery, and the SMCs were isolated from the arteries using an enzymatic disassociation. According to the sources, the SMCs were divided into non-hypertension (NH) and essential hypertension (EH) groups. Single channel patch clamp technique was used to investigate the effect of β-E(2) and ICI 182780 (a specific blocker of estrogen receptor) on BK(Ca) in the SMCs. The results showed the opening of BK(Ca) in the SMCs was voltage and calcium dependent, and could be blocked by IbTX. β-E(2) (100 μmol/L) significantly increased open probability (Po) of BK(Ca) in both NH and EH groups. After β-E(2) treatment, NH group showed higher Po of BK(Ca) compared with EH group. ICI 182780 could inhibit the activating effect of β-E(2) on BK(Ca) in no matter NH or EH groups. These results suggest β-E(2) activates BK(Ca) in mesenteric artery SMCs from post-menopause women via estrogen receptor, but hypertension may decline the activating effect of β-E(2) on BK(Ca).  相似文献   

15.
Classical NaCa exchange models are based on a symmetric carrier system where Na and Ca competing from the same site, can produce net movement of the other against its electrochemical gradient. We have explored this symmetric assumption by studying the Cao and Nao-dependent Na efflux in dialyzed squid axons in which proper control of both external and internal medium was achieved. The results show: (1) In axons dialyzed without Cai and ATP, Cao-dependent Na efflux cannot be detected even in the absence of Nao. Under these conditions, the level of Na efflux (1 pmol · cm−2 · s−1) is close to that predicted by an electrical ‘leak’. (2) In axons dialyzed with Cai (100 μM) and without ATP, Na efflux measured in 440 mM Nao, is about 4–5 pmol · cm−2 · s−1 and rather insensitive to Cao between 0 and 10 mM. However, in the absence of Nao, a Cao-dependent Na efflux is observed similar in magnitude to that found in the presence of external Na. (3) In the presence of both Cai and ATP, Na efflux into artificial sea-water (440 mM Na, 10 mM Ca) is 18 pmol · cm−2 · s−1. In the absence of Nao the efflux of Na is 7.5 pmol · cm−2 · s−1. In the absence of both Nao and Cao the efflux is close to ‘leak’. With full Nao but no Cao, the Na efflux average 12.6 pmol · cm−2 · s−1. These results indicate a marked asymmetry in the modus operandi of the NaCa exchange system with respect to Cai and ATP. These two substrates are required from the cis side to promote Cao-dependent Na efflux (reversal NaCa exchange).  相似文献   

16.
17.
The large conductance Ca2+-activated K+ (BK) channel, abundantly expressed in vascular smooth muscle cells, plays a critical role in controlling vascular tone. Activation of BK channels leads to membrane hyperpolarization and promotes vasorelaxation. BK channels are activated either by elevation of the intracellular Ca2+ concentration or by membrane depolarization. It is also regulated by a diversity of vasodilators and vasoconstrictors. Interleukin-1β (IL-1β) is one of the cytokines that play important roles in the development and progression of a variety of cardiovascular diseases. The effects of IL-1β on vascular reactivity are controversial, and little is known about the modulation of BK channel function by IL-1β. In this study, we investigated how IL-1β modulates BK channel function in cultured arterial smooth muscle cells (ASMCs), and examined the role of H2O2 in the process. We demonstrated that IL-1β had biphasic effects on BK channel function and membrane potential of ASMCs, that is both concentration and time dependent. IL-1β increased BK channel-dependent K+ current and hyperpolarized ASMCs when applied for 30 min. While long-term (24–48 h) treatment of IL-1β resulted in decreased expression of α-subunit of BK channel, suppressed BK channel activity, decreased BK channel-dependent K+ current and depolarization of the cells. H2O2 scavenger catalase completely abolished the early effect of IL-1β, while it only partly diminished the long-term effect of IL-1β. These results may provide important molecular mechanisms for therapeutic strategies targeting BK channel in inflammation-related diseases.  相似文献   

18.
Summary Both simultaneous and consecutive mechanisms for Na+–Ca++ exchange are formulated and the associated systems of steady-state equations are solved numerically, and the net and unidirectional Ca++ fluxes computed for a variety of ionic and electrical boundary conditions. A simultaneous mechanism is shown to be consistent with a broad range of experimental data from the squid giant axon, cardiac muscle and isolated sarcolemmal vesicles. In this mechanism, random binding of three Na+ ions and one Ca++ on apposing sides of a membrane are required before a conformational change can occur, translocating the binding sites to the opposite sides of the membranes. A similar (return) translocation step is also permitted if all the sites are empty. None of the other states of binding can undergo such translocating conformational changes. The resulting reaction scheme has 22 reaction steps involving 16 ion-binding intermediates. The voltage dependence of the equilibrium constant for the overall reaction, required by the 31 Na+Ca++ stoichiometry was obtained by multiplying and dividing, respectively, the forward and reverse rate constants of one of the translocational steps by exp(–FV/2RT). With reasonable values for the membrane density of the enzyme (120 sites m2) and an upper limit for the rate constants of both translocational steps of 105·sec–1, satisfactory behavior was obtainable with identical binding constants for Ca++ on the two sides of the membrane (106 m –1), similar symmetry also being assumed for the Na+ binding constant (12 to 60m –1). Introduction of order into the ion-binding process eliminates behavior that is consistent with experimental findings.  相似文献   

19.
Treatment of bovine pulmonary artery smooth muscle with the O2•− generating system hypoxanthine plus xanthine oxidase stimulated MMP-2 activity and PKC activity; and inhibited Na+ dependent Ca2+ uptake in the microsomes. Pretreatment of the smooth muscle with SOD (the O2•− scavenger) and TIMP-2 (MMP-2 inhibitor) prevented the increase in MMP-2 activity and PKC activity, and reversed the inhibition of Na+ dependent Ca2+ uptake in the microsomes. Pretreatment with calphostin C (a general PKC inhibitor) and rottlerin (a PKCδ inhibitor) prevented the increase in PKC activity and reversed O2•− caused inhibition of Na+ dependent Ca2+ uptake without causing any change in MMP-2 activity in the microsomes of the smooth muscle. Treatment of the smooth muscle with the O2•− generating system revealed, respectively, 36 kDa RACK-1 and 78 kDa PKCδ immunoreactive protein profile along with an additional 38 kDa immunoreactive fragment in the microsomes. The 38 kDa band appeared to be the proteolytic fragment of the 78 kDa PKCδ since pretreatment with TIMP-2 abolished the increase in the 38 kDa immunoreactive fragment. Co-immunoprecipitation of PKCδ and RACK-1 demonstrated O2•− dependent increase in PKCδ-RACK-1 interaction in the microsomes. Immunoblot assay elicited an immunoreactive band of 41 kDa Giα in the microsomes. Treatment of the smooth muscle tissue with the O2•− generating system causes phosphorylation of Giα in the microsomes and pretreatment with TIMP-2 and rottlerin prevented the phosphorylation. Pretreatment of the smooth muscle tissue with pertussis toxin reversed O2•− caused inhibition of Na+ dependent Ca2+ uptake without affecting the protease activity and PKC activity in the microsomes. We suggest the existence of a pertussis toxin sensitive G protein mediated mechanism for inhibition of Na+ dependent Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle under O2•− triggered condition, which is regulated by PKCδ dependent phosphorylation and sensitive to TIMP-2 for its inhibition. (Mol Cell Biochem xxx: 107–117, 2005)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号