首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.  相似文献   

2.
Bomar MG  Pai MT  Tzeng SR  Li SS  Zhou P 《EMBO reports》2007,8(3):247-251
The ubiquitin-binding zinc finger (UBZ) domain of human DNA Y-family polymerase (pol) eta is important in the recruitment of the polymerase to the stalled replication machinery in translesion synthesis. Here, we report the solution structure of the pol eta UBZ domain and its interaction with ubiquitin. We show that the UBZ domain adopts a classical C(2)H(2) zinc-finger structure characterized by a betabetaalpha fold. Nuclear magnetic resonance titration maps the binding interfaces between UBZ and ubiquitin to the alpha-helix of the UBZ domain and the canonical hydrophobic surface of ubiquitin defined by residues L8, I44 and V70. Although the UBZ domain binds ubiquitin through a single alpha-helix, in a manner similar to the inverted ubiquitin-interacting motif, its structure is distinct from previously characterized ubiquitin-binding domains. The pol eta UBZ domain represents a novel member of the C(2)H(2) zinc finger family that interacts with ubiquitin to regulate translesion synthesis.  相似文献   

3.
In eukaryotic cells, the Rad6/Rad18-dependent monoubiquitination of the proliferating cell nuclear antigen (PCNA) plays an essential role in the switching between replication and translesion DNA synthesis (TLS). The DNA polymerase Polη binds to PCNA via a consensus C-terminal PCNA-interacting protein (PIP) motif. It also specifically interacts with monoubiquitinated PCNA thanks to a recently identified ubiquitin-binding domain (UBZ). To investigate whether the TLS activity of Polη is always coupled to PCNA monoubiquitination, we monitor the ability of cell-free extracts to perform DNA synthesis across different types of lesions. We observe that a cis-syn cyclobutane thymine dimer (TT-CPD), but not a N-2-acetylaminofluorene-guanine (G-AAF) adduct, is efficiently bypassed in extracts from Rad18-deficient cells, thus demonstrating the existence of a Polη-dependent and Rad18-independent TLS pathway. In addition, by complementing Polη-deficient cells with PIP and UBZ mutants, we show that each of these domains contributes to Polη activity. The finding that the bypass of a CPD lesion in vitro does not require Ub-PCNA but nevertheless depends on the UBZ domain of Polη, reveals that this domain may play a novel role in the TLS process that is not related to the monoubiquitination status of PCNA.  相似文献   

4.
Translesion synthesis (TLS) DNA polymerases are specialized to bypass lesions that block replicative polymerases and prevent complete genome duplication. Current TLS models hypothesize that PCNA, the polymerase processivity clamp, is important for regulating the access and loading of the low fidelity TLS polymerases onto DNA in response to replication-blocking lesions. PCNA binds to the C-terminus of yeast Poleta, for example, and this interaction is required for cell survival after UV irradiation. Previously, we identified two spontaneous, Polzeta-dependent "complex" mutation hotspots using the lys2DeltaA746 frameshift reversion assay in repair-compromised cells. In the current study we observed an accumulation of Polzeta-dependent complex frameshifts at a third hotspot in Poleta-deficient cells. Interestingly, the sequence of this third hotspot is the reverse complement of the two hotspots previously identified, suggesting that the utilization of Polzeta and Poleta may be related to the position of the relevant lesion on either the leading- or lagging-strand template. Using the lys2DeltaA746 assay system, we investigated changes in the accumulation of complex events at hotspots when the direction of replication was reversed in repair-compromised cells with either wildtype Poleta, a deletion of Poleta, or a mutant of Poleta that cannot interact with PCNA. Our results suggest that there is a polymerase hierarchy between Poleta and Polzeta in the bypass of certain lesions and that the interaction of Poleta with PCNA is needed for some, but not all, spontaneous lesion bypass.  相似文献   

5.
Uninterrupted replication across damaged DNA is critical to prevent replication fork collapse and resulting double-strand DNA breaks. Rad18-mediated PCNA ubiquitination is a crucial event that triggers a number of downstream pathways important for lesion bypass. Here, we report characterization of Spartan, an evolutionarily conserved protein containing a PCNA-interacting peptide motif, called a PIP box, and a UBZ4 ubiquitin-binding domain. Spartan is a nuclear protein and forms DNA damage-induced foci that colocalize with markers for stalled DNA replication. Focus formation of Spartan requires its PIP-box and the UBZ4 domain and is dependent on Rad18 and the PCNA ubiquitination site, indicating that Spartan is recruited to ubiquitinated PCNA. Spartan depletion results in increased mutagenesis during replication of UV-damaged DNA. Taken together, our data suggest that Spartan is recruited to sites of stalled replication via ubiquitinated PCNA and plays an important role to prevent mutations associated with replication of damaged DNA.  相似文献   

6.
The Rad6-Rad18 ubiquitin-conjugating enzyme complex of Saccharomyces cerevisiae promotes replication through DNA lesions via three separate pathways that include translesion synthesis (TLS) by DNA polymerases zeta (Polzeta) and Poleta and postreplicational repair mediated by the Mms2-Ubc13 ubiquitin-conjugating enzyme and Rad5. Here we report our studies with a proliferating cell nuclear antigen (PCNA) mutation, pol30-119, which results from a change of the lysine 164 residue to arginine. It has been shown recently that following treatment of yeast cells with DNA-damaging agents, the lysine 164 residue of PCNA becomes monoubiquitinated in a Rad6-Rad18-dependent manner and that subsequently this PCNA residue is polyubiquitinated via a lysine 63-linked ubiquitin chain in an Mms2-Ubc13-, Rad5-dependent manner. PCNA is also modified by SUMO conjugation at the lysine 164 residue. Our genetic studies with the pol30-119 mutation show that in addition to conferring a defect in Polzeta-dependent UV mutagenesis and in Poleta-dependent TLS, this PCNA mutation inhibits postreplicational repair of discontinuities that form in the newly synthesized strand across from UV lesions. In addition, we provide evidence for the activation of the RAD52 recombinational pathway in the pol30-119 mutant and we infer that SUMO conjugation at the lysine 164 residue of PCNA has a role in suppressing the Rad52-dependent postreplicational repair pathway.  相似文献   

7.
Uninterrupted replication across damaged DNA is critical to prevent replication fork collapse and resulting double-strand DNA breaks. Rad18-mediated PCNA ubiquitination is a crucial event that triggers a number of downstream pathways important for lesion bypass. Here, we report characterization of Spartan, an evolutionarily conserved protein containing a PCNA-interacting peptide motif, called a PIP box, and a UBZ4 ubiquitin-binding domain. Spartan is a nuclear protein and forms DNA damage-induced foci that colocalize with markers for stalled DNA replication. Focus formation of Spartan requires its PIP-box and the UBZ4 domain and is dependent on Rad18 and the PCNA ubiquitination site, indicating that Spartan is recruited to ubiquitinated PCNA. Spartan depletion results in increased mutagenesis during replication of UV-damaged DNA. Taken together, our data suggest that Spartan is recruited to sites of stalled replication via ubiquitinated PCNA and plays an important role to prevent mutations associated with replication of damaged DNA.  相似文献   

8.
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence recruits them to the damage sites, this model has also been challenged by several observations. In this study, we expressed the PCNA-164R and ubiquitin (UB) fusion genes in an inducible manner in an attempt to mimic PCNA monoubiquitination in cultured human cells. It was found that expression of both N- and C-terminal PCNA•Ub fusions conferred significant tolerance to ultraviolet (UV)-induced DNA damage. Surprisingly, depletion of Polη, a TLS polymerase dedicated to bypassing UV-induced pyrimidine dimers, did not alter tolerance conferred by PCNA•Ub. In contrast, depletion of Rev1, another TLS polymerase serving as a scaffold for the assembly of the TLS complex, completely abolished PCNA•Ub-mediated damage tolerance. Similar genetic interactions were confirmed when UV-induced monoubiquitination of endogenous PCNA is abolished by RAD18 deletion. Hence, PCNA•Ub fusions bypass the requirement for PCNA monoubiquitination, and UV damage tolerance conferred by these fusions is dependent on Rev1 but independent of Polη.  相似文献   

9.
Ubiquitin-binding domains (UBDs) provide specificity to the ubiquitin system, which is also involved in translesion synthesis (TLS) in eukaryotic cells. Upon DNA damage, the UBDs (UBM domains) of polymerase iota (Pol ι) interact with ubiquitinated proliferating cell nuclear antigen to regulate the interchange between processive DNA polymerases and TLS. We report a biophysical analysis and solution structures of the two conserved UBM domains located in the C-terminal tail of murine Pol ι in complex with ubiquitin. The 35-amino acid core folds into a helix-turn-helix motif, which belongs to a novel domain fold. Similar to other UBDs, UBMs bind to ubiquitin on the hydrophobic surface delineated by Leu-8, Ile-44, and Val-70, however, slightly shifted toward the C terminus. In addition, UBMs also use electrostatic interactions to stabilize binding. NMR and fluorescence spectroscopy measurements revealed that UBMs bind monoubiquitin, and Lys-63- but not Lys-48-linked chains. Importantly, these biophysical data are supported by functional studies. Indeed, yeast cells expressing ubiquitin mutants specifically defective for UBM binding are viable but sensitive to DNA damaging conditions that require TLS for repair.  相似文献   

10.
DNA polymerase eta (Polη) is a unique translesion DNA synthesis (TLS) enzyme required for the error-free bypass of ultraviolet ray (UV)-induced cyclobutane pyrimidine dimers in DNA. Therefore, its deficiency confers cellular sensitivity to UV radiation and an increased rate of UV-induced mutagenesis. Polη possesses a ubiquitin-binding zinc finger (ubz) domain and a PCNA-interacting-protein (pip) motif in the carboxy-terminal region. The role of the Polη pip motif in PCNA interaction required for DNA polymerase recruitment to the stalled replication fork has been demonstrated in earlier studies; however, the function of the ubz domain remains divisive. As per the current notion, the ubz domain of Polη binds to the ubiquitin moiety of the ubiquitinated PCNA, but such interaction is found to be nonessential for Polη''s function. In this study, through amino acid sequence alignments, we identify three classes of Polη among different species based on the presence or absence of pip motif or ubz domain and using comprehensive mutational analyses, we show that the ubz domain of Polη, which intrinsically lacks the pip motif directly binds to the interdomain connecting loop (IDCL) of PCNA and regulates Polη''s TLS activity. We further propose two distinct modes of PCNA interaction mediated either by pip motif or ubz domain in various Polη homologs. When the pip motif or ubz domain of a given Polη binds to the IDCL of PCNA, such interaction becomes essential, whereas the binding of ubz domain to PCNA through ubiquitin is dispensable for Polη''s function.  相似文献   

11.
Ubiquitin (Ub)-binding domains (UBDs) are key elements in conveying Ub-based cellular signals. UBD-containing proteins interact with ubiquitinated targets and control numerous biological processes. They themselves undergo UBD-dependent monoubiquitination, which promotes intramolecular binding of the UBD to the attached Ub and leads to their inactivation. Here, we report that, in contrast to the established ubiquitination pathway, the presence of UBDs allows the ubiquitination of host proteins independently of E3 ligases. UBDs of different types, including UBA, UIM, UBM, NFZ, and UBZ, can directly cooperate with Ub-charged E2 enzymes to promote monoubiquitination. Using FRET and siRNA technologies, we verify that Ub-loaded E2 and substrates interact in cells and that E2 enzymes are essential for their monoubiquitination in vivo. This modification is mechanistically and functionally distinct from E3-mediated and growth factor-dependent monoubiquitination.  相似文献   

12.
The interaction between ubiquitinated proteins and intracellular proteins harboring ubiquitin binding domains (UBDs) is critical to a multitude of cellular processes. Here, we report that Rabex-5, a guanine nucleotide exchange factor for Rab5, binds to Ub through two independent UBDs. These UBDs determine a number of properties of Rabex-5, including its coupled monoubiquitination and interaction in vivo with ubiquitinated EGFRs. Structural and biochemical characterization of the UBDs of Rabex-5 revealed that one of them (MIU, motif interacting with ubiquitin) binds to Ub with modes superimposable to those of the UIM (ubiquitin-interacting motif):Ub interaction, although in the opposite orientation. The other UBD, RUZ (Rabex-5 ubiquitin binding zinc finger) binds to a surface of Ub centered on Asp58(Ub) and distinct from the "canonical" Ile44(Ub)-based surface. The two binding surfaces allow Ub to interact simultaneously with different UBDs, thus opening new perspectives in Ub-mediated signaling.  相似文献   

13.
Cells have evolved mutagenic bypass mechanisms that prevent stalling of the replication machinery at DNA lesions. This process, translesion DNA synthesis (TLS), involves switching from high-fidelity DNA polymerases to specialized DNA polymerases that replicate through a variety of DNA lesions. In eukaryotes, polymerase switching during TLS is regulated by the DNA damage-triggered monoubiquitylation of PCNA. How the switch operates is unknown, but all TLS polymerases of the so-called Y-family possess PCNA and ubiquitin-binding domains that are important for their function. To gain insight into the structural mechanisms underlying the regulation of TLS by ubiquitylation, we have probed the interaction of ubiquitin with a conserved ubiquitin-binding motif (UBM2) of Y-family polymerase Polι. Using NMR spectroscopy, we have determined the structure of a complex of human Polι UBM2 and ubiquitin, revealing a novel ubiquitin recognition fold consisting of two α-helices separated by a central trans-proline residue conserved in all UBMs. We show that, different from the majority of ubiquitin complexes characterized to date, ubiquitin residue Ile44 only plays a modest role in the association of ubiquitin with Polι UBM2. Instead, binding of UBM2 is centered on the recognition of Leu8 in ubiquitin, which is essential for the interaction.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations—a phenotype similar to Polη and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Polη probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK164 modification.  相似文献   

15.
Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.  相似文献   

16.
UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase eta (Poleta), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Poleta result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Poleta for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3' T of a (6-4) TT photoproduct, both yeast and human Poleta preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polzeta, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3' T of the (6-4) TT lesion by Poleta, and Polzeta inserts the correct nucleotide A opposite the 5' T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Poleta and Polzeta, wherein Poleta inserts a nucleotide opposite the 3' T of the lesion and Polzeta extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3' T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3' T-->C change that would result from the insertion of a G opposite the 3' T of the (6-4) TT lesion.  相似文献   

17.
Replicative DNA polymerases duplicate genomes in a very efficient and accurate mode. However their progression can be blocked by DNA lesions since they are unable to accommodate bulky damaged bases in their active site. In response to replication blockage, monoubiquitination of PCNA promotes the switch between replicative and specialized polymerases proficient to overcome the obstacle. In this study, we characterize novel connections between proteins involved in replication and TransLesion Synthesis (TLS). We demonstrate that PDIP38 (Polδ interacting protein of 38 kDa) directly interacts with the TLS polymerase Polη. Interestingly, the region of Polη interacting with PDIP38 is found to be located within the ubiquitin-binding zinc finger domain (UBZ) of Polη. We show that the depletion of PDIP38 increases the number of cells with Polη foci in the absence of DNA damage and diminishes cell survival after UV irradiation. In addition, PDIP38 is able to interact directly not only with Polη but also with the specialized polymerases Rev1 and Polζ (via Rev7). We thus suggest that PDIP38 serves as a mediator protein helping TLS Pols to transiently replace replicative polymerases at damaged sites.  相似文献   

18.
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.  相似文献   

19.
Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.  相似文献   

20.
Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号