首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unique MAP Kinase binding sites   总被引:1,自引:0,他引:1  
Map kinases are drug targets for autoimmune disease, cancer, and apoptosis-related diseases. Drug discovery efforts have developed MAP kinase inhibitors directed toward the ATP binding site and neighboring "DFG-out" site, both of which are targets for inhibitors of other protein kinases. On the other hand, MAP kinases have unique substrate and small molecule binding sites that could serve as inhibition sites. The substrate and processing enzyme D-motif binding site is present in all MAP kinases, and has many features of a good small molecule binding site. Further, the MAP kinase p38alpha has a binding site near its C-terminus discovered in crystallographic studies. Finally, the MAP kinases ERK2 and p38alpha have a second substrate binding site, the FXFP binding site that is exposed in active ERK2 and the D-motif peptide induced conformation of MAP kinases. Crystallographic evidence of these latter two binding sites is presented.  相似文献   

2.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

3.
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.  相似文献   

4.
TAO2 is a mitogen-activated protein kinase kinase kinase (MAP3K) that doubly phosphorylates and activates the MAP kinase kinases (MAP2Ks) MEK3 and MEK6. The structure of the kinase domain of TAO2 (1-320) has been solved in its phosphorylated active conformation. The structure, together with structure-based mutagenic analysis, reveals that positively charged residues in the substrate binding groove mediate the first step in the dual phosphorylation of MEK6, on the threonine residue in the motif DS*VAKT*I (*denotes phosphorylation site) of MEK6. TAO2 is a Ste20p homolog, and the structure of active TAO2, in comparison with that of low-activity p21-activated protein kinase (PAK1), a Ste20p-related MAP4K, reveals how this group of kinases is activated by phosphorylation. Finally, active TAO2 displays unusual interactions with ATP, involving, in part, a subgroup-specific C-terminal extension of TAO2. The observed interactions may be useful in making specific inhibitors of TAO kinases.  相似文献   

5.
The mitogen-activated protein kinases (MAP kinases) play a central role in signaling pathways initiated by extracellular stimuli such as growth factors, cytokines, and various forms of environmental stress. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Interestingly, down-regulation of MAP kinase activity can be initiated by multiple Ser/Thr phosphatases, Tyr-specific phosphatases, and dual-specificity phosphatases. This would inevitable lead to the formation of monophosphorylated MAP kinases. However, in much of the literature investigating MAP kinase signaling, there has been the implicit assumption that the monophosphorylated forms are inactive. Thus, the significance for the need of multiple phosphatases in regulating MAP kinase activity is not clear, and the biological functions of these monophosphorylated MAP kinases are currently unknown. We have prepared extracellular signal-regulated protein kinase 2 (ERK2) in all phosphorylated forms and kinetically characterized them using two proteins (the myelin basic protein and Elk-1) and ATP as substrates. Our results revealed that a single phosphorylation in the activation loop of ERK2 produces an intermediate activity state. Thus, the catalytic efficiencies of the monophosphorylated ERK2/pY and ERK2/pT (ERK2 phosphorylated on Tyr-185 and Thr-183, respectively) are approximately 2-3 orders of magnitude higher than that of the unphosphorylated ERK2 and are only 1-2 orders of magnitude lower than that of the fully active bisphosphorylated ERK2/pTpY. This raises the possibility that the monophosphorylated ERK2s may have distinct biological roles in vivo. Different phosphorylation states in the activation loop could be linked to graded effects on a single ERK2 function. Alternatively, they could be linked to distinct ERK2 functions. Although less active than the bisphosphorylated species, the monophosphorylated ERK2s may differentially phosphorylate pathway components.  相似文献   

6.
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle, PD-098059 abolished endothelin-1 (ET-1)-stimulated phosphorylation of ERK MAP kinases and caldesmon, but p38 MAP kinase activation and contractile response remained unaffected. SB-203580 reduced muscle contraction and inhibited p38 MAP kinase and HSP27 phosphorylation but had no effect on ERK MAP kinase and caldesmon phosphorylation. In permeabilized muscle fibers, SB-203580 and a polyclonal anti-HSP27 antibody attenuated ET-1-dependent contraction, whereas PD-098059 had no effect. These results suggest that ERK MAP kinases phosphorylate caldesmon in vivo but that activation of this pathway is unnecessary for force development. The generation of maximal force may be modulated by the p38 MAP kinase/HSP27 pathway.  相似文献   

7.
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.  相似文献   

8.
MAP kinases: universal multi-purpose signaling tools   总被引:1,自引:0,他引:1  
MAP (mitogen-activated protein) kinases are serine/threonine protein kinases and mediate intracellular phosphorylation events linking various extracellular signals to different cellular targets. MAP kinase, MAP kinase kinase and MAP kinase kinase kinase are functional protein kinase units that are conserved in several signal transduction pathways in animals and yeasts. Isolation of all three components was also shown in plants and suggests conservation of a protein kinase module in all eukaryotic cells. In plants, MAP kinase modules appear to be involved in ethylene signaling and auxin-induced cell proliferation. Therefore, coupling of different extracellular signals to different physiological responses is mediated by MAP kinase cascades and appears to have evolved from a single prototypical protein kinase module which has been adapted to the specific requirements of different organisms.  相似文献   

9.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

10.
Knight JD  Qian B  Baker D  Kothary R 《PloS one》2007,2(10):e982
The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.  相似文献   

11.
Two peaks of mitogen-activated protein (MAP) kinase activator activity are resolved upon ion exchange chromatography of cytosolic extracts from epidermal growth factor-stimulated A431 cells. Two forms of the activator (1 and 2) have been purified from these peaks, using chromatography on Q-Sepharose, heparin-agarose, hydroxylapatite, ATP-agarose, Sephacryl S-300, Mono S, and Mono Q. The two preparations each contained one major protein band with an apparent molecular mass of 46 or 45 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Evidence identifying the MAP kinase activators as the 46- and 45-kDa proteins is presented. Using inactive mutants of MAP kinase as potential substrates, it was found that each preparation of MAP kinase activator catalyzes phosphorylation of the regulatory residues, threonine 188 and tyrosine 190, of Xenopus MAP kinase. These results support the concept that the MAP kinase activators are protein kinases. These MAP kinase kinases demonstrate an apparent high degree of specificity toward the native conformation of MAP kinase, although slow autophosphorylation on serine, threonine, and tyrosine residues and phosphorylation of myelin basic protein on serine and threonine residues is detected as well.  相似文献   

12.
Mitogen-activated protein (MAP) kinases are a family of serine/threonine protein kinases that play an important role in a myriad of cellular processes, including cell proliferation, differentiation, and apoptosis. Abnormal activation of MAP kinases has been shown to participate in a variety of human diseases which include cancer, septic shock, rheumatoid arthritis, diabetes, and cardiovascular diseases. Active MAP kinase enzymes are not only valuable for basic biomedical research but are also critical for the development of pharmacological inhibitors as therapeutic drugs in the treatment of relevant human diseases. MAP kinases produced in a bacterial system are poorly active due to a lack of proper phosphorylation at their characteristic threonine and tyrosine residues. To overcome these limitations, we have developed a mammalian expression system for high level expression and one-step purification of enzymatically MAP kinases. We cloned JNK1, p38, and p38-regulated MAP kinase-activated protein kinase-2 into the mammalian expression vector pEBG, and expressed these protein kinases as glutathione S-transferase fusion proteins in human embryonic kidney 293T cells through transient transfection. The protein kinases were activated in vivo through treating the transfected cells with sodium arsenite and affinity-purified using glutathione-Sepharose beads. The enzymatic activities of these protein kinases were demonstrated by Western blot analysis and in vitro kinase assays. Our results indicate that this system is an extremely powerful tool for generating valuable reagents, and could be very valuable for proteomic studies.  相似文献   

13.
Mitogen-activated protein (MAP) kinases constitute a large familyof proteins with many functions. They are represented by a multitudeof paralogous isoforms in yeast, vertebrates, and other eukaryotes.A phylogenetically conserved function of MAP kinases is to carryosmotic signals from sensory to target elements of cells. Eventhough this function of MAP kinases is ubiquitous and characteristicof unicellular and multicellular eukaryotes alike the contingenciesbetween individual MAP kinases, sensor elements, and targetelements have been subject to vast modification during evolution.Extensive networking of MAP kinase cascades with other signalingpathways is reflected by the large number of diverse signalsthat can be carried by a single MAP kinase pathway and flexibleactivation kinetics. It is emerging that the most importantfunction of MAP kinase networks may not be signal amplificationbut integration of information about the setpoint of environmentalparameters (including osmolality) with other physiological processesto control cell function. Insight into how this cellular integrationof information is achieved by MAP kinase networks will shedlight on the principles of cell dynamics and adaptation.  相似文献   

14.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

15.
Intracellular localization of maturation/M-phase promoting factor (MPF) and mitogen activated protein (MAP) kinase in mature oocytes has been examined by immunocytochemical methods and the authors of these studies have reported that they are localized on spindles during M-phase. Although these reports showed the relative localization of MPF and MAPK on spindles, it has never been shown whether these kinases are present in the cytoplasm and, if they are present, how many parts of the kinases are localized on the metaphase spindle. In the present study, we made quantitative analyses of MPF and MAP kinase localized on oocyte spindles by kinase assays and immunoblotting after removal of the spindles from porcine mature oocytes. First, we certified their intracellular distribution by immunocytochemical methods and observed sharp signals of cyclin B1 on spindle poles and MAP kinase signals on the microtubule of metaphase spindles. In contrast to these results by immunostaining, the amounts of MPF and MAP kinase localized on spindles examined by immunoblotting and kinase assays were undetectable and less than 20%, respectively. These results indicate that the immunocytochemical technique is a powerful method for showing relative localization, but it is not suitable for quantitative analysis, and that the removal of metaphase spindles from mature oocytes does not have a severe negative impact on the subsequent MPF and MAP kinase activity and on the cell cycle progression in early embryo development.  相似文献   

16.
17.
BACKGROUND: Mitogen-activated protein (MAP) kinases mediate the cellular response to stimuli such as pro-inflammatory cytokines and environmental stress. P38gamma is a new member of the MAP kinase family, and is expressed at its highest levels in skeletal muscle. P38gamma is 63% identical in sequence to P38alpha. The structure of P38alpha MAP kinase has been determined in the apo, unphosphorylated, inactive form. The structures of apo unphosphorylated ERK2, a related MAP kinase, and apo phosphorylated ERK2 have also been determined. RESULTS: We have determined the structure of doubly phosphorylated P38gamma in complex with an ATP analog by X-ray crystallography. This is the first report of a structure of an activated kinase in the P38 subfamily, and the first bound to a nucleotide. P38gamma residue phosphoryl-Thr183 forms hydrogen bonds with five basic amino acids, and these interactions induce an interdomain rotation. The conformation of the activation loop of P38gamma is almost identical to that observed in the structure of activated ERK2. However, unlike ERK2, the crystal structure and solution studies indicate that activated P38gamma exists as a monomer. CONCLUSIONS: Interactions mediated by phosphoryl-Thr183 induce structural changes that direct the domains and active-site residues of P38gamma into a conformation consistent with catalytic activity. The conformation of the phosphorylation loop is likely to be similar in all activated MAP kinases, but not all activated MAP kinases form dimers.  相似文献   

18.
Small-molecule protein kinase inhibitors are widely used to elucidate cellular signaling pathways and are promising therapeutic agents. Owing to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments that use these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we used functional assays to profile the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases. Quantitative analysis revealed complex and often unexpected interactions between protein kinases and kinase inhibitors, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can identify multitargeted inhibitors of specific, diverse kinases. The results have implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments involving kinase inhibitors.  相似文献   

19.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号