首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histological and electrophysiological studies of identified long hair sensilla (LHS) have provided information on primary afferent fibre pathways in the ventral nerve cord of the Indian black scorpion, Heterometrus fulvipes.Cobalt-filling of single LHS on the metasoma showed that sensory axons enter the respective segmental ganglion, ascend ipsilaterally through the next anterior ganglia and terminate in a 4th ganglion. In each ganglion, these plurisegmental fibres give off collateral branches that terminate in the ganglionic neuropil. Fibres entering heterolateral connectives were not found.Recordings from peripheral nerves after deflections of a hair showed single or multiple spike discharges. A single spike could be recorded from ipsilateral anterior connectives of the ventral nerve cord, indicating a through-conductance of the sensory pathways. Strong deflections of a single hair activated several ipsilateral and fewer contralateral ascending interneurons and some segmentai motor neurons. Behavioral studies demonstrate the mechanoreceptive function of the LHS.The present study provides evidence in support of the notion that sensory afferents of the postabdomen in the scorpion bring about rapid, co-ordinated intersegmental movements of the multisegmented tail of the scorpion.Abbreviations CNS central nervous system - LHS long hair sensillum - TR trichobothria  相似文献   

2.
The topography of long hair sensilla on the coxae of walking legs and pedipalps of the scorpionHeterometrus fulvipes is described. Identified long hair sensilla are cobalt filled, and central projections of sensory fibres are reported for the first time in the suboesophageal ganglion of this scorpion. The afferent fibres arising from each long hair sensilla segregate into ventral, dorsomedial and dorsal tracts upon their entry into the suboesophageal ganglion. These transverse tracts bifurcate towards the middle of the leg neuromere and form three ipsilateral, plurisegrnental, longitudinal sensory pathways. Filling a pair of bilaterally distributed long hair sensilla shows bilaterally arranged longitudinal afferent tracts interconnected by distinct transverse commissures. Similar patterns of sensory projections are observed when filling homologous hairs on other legs and pedipalps. Numerous fine collaterals arise from the longitudinal sensory trancts that subdivide and end in small blebs presumed to be presynaptic endings. The dorsal and dorsomedial longitudinal tracts and their respective commissures are in close association with the dendritic arborisations of pedipalpal and leg motor neurons, suggesting direct contact between them. The probable functions of these multisegmental hair afferent pathways are discussed.  相似文献   

3.
The sensory structures present on the palps and legs of adult Argas persicus Oken (Ixodoidea: Argasidae) were studied by light, scanning and transmission electron microscopy. The number, distribution, surface morphology and the fine structure of the prominent sensilla present on these appendages were determined. The palps have 2 morphologically prominent types of sensilla: one with a grooved surface of the hair and the other having a non-grooved hair. The TEM distinguishes at least 4 prominent subtypes in grooved sensilla with single or double lumina and dendrites occupying the periphery of the central lumen or distributed all over the central lumen. Amongst the sensilla with non-grooved hair-shaft, a rare type of Olfactory Mechanoreceptive (OM) sensillum was found on the palps and the first legs of A. persicus. At the base of the hair-shaft, the OM sensillum has 2 mechanosensory dendrites. The hair-shaft of the sensillum has a porous cuticle, characteristic of an olfactory sensillum. The lumen of the hair-shaft is invested with branching dendrites from 3–8 neurons, which are surrounded by 4 sheath cells. The sensilla on the legs, including those present in the Hallers organ, are of at least 3 prominent categories. (i) Single wall with un-innervated hair-shaft. (ii) Single wall, multiporous sensillum with dendrites present in the hair shaft. (iii) Double walls with spoke channels and dendrites present in the central lumen. Sensory projections from the crown of sensilla located on the distal end of the palp extend to the palpal and suboesophageal (SOG) ganglia. Projections in the SOG extend further to the contralateral side. Sensilla in the Hallers organ project to the first pedal ganglion and to the anterodorsal region of supraoesophageal ganglion. As expected, the primary sensory projections from the sensilla of the other 3 legs extend to the respective pedal ganglia.  相似文献   

4.
The neural pathways underlying the processing of signals from locust (Schistocerca gregaria) ovipositor hairs by different classes of interneurones are investigated.Spikes in the sensory neurones from these hairs evoke chemically-mediated, unitary EPSPs with a short and constant latency in six identified non-giant projection interneurones with cell bodies in the terminal abdominal ganglion. Five of these interneurones receive direct inputs from the valves ipsilateral to their neuropilar branches, whereas the other receives direct inputs from valves on both sides. The sensory neurone from a single hair makes divergent connections with several interneurones and those from different hairs make convergent connections with a given interneurone. The amplitude of the EPSPs evoked depends on the position of a hair along the proximal-distal axis of the valve, with sensory neurones from more distal hairs generating larger amplitude EPSPs.Deflection of hairs also excites three of the four giant projection interneurones through polysynaptic pathways and some local interneurones in the terminal abdominal ganglion through monosynaptic connections. Branches of non-giant projection interneurones, local interneurones, but not those of the giant interneurones, overlap the axon terminals of the ovipositor hair afferents in the terminal abdominal ganglion.  相似文献   

5.
The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the Blumenthal neuropil) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.  相似文献   

6.
Sea anemones capture prey by discharging nematocysts and other cnidae. Discharge of microbasic p-mastigophore (mpm) nematocysts is regulated in part by hair bundle mechanoreceptors on tentacles arising from multicellular complexes consisting of supporting cells and a sensory neuron. Anemone hair bundles detect movements of prey and then sensitize cnidocytes (cnida-containing cells) to discharge mpm nematocysts in response to contact between the prey and tentacle. Data from a simple bioassay based on counting nematocysts discharged into test probes, indicate that approximately twice as many nematocysts discharge into test probes touched to tentacles after sensitization than before sensitization. We here report that sub-second bursts of vibrational stimuli at key frequencies (51, 55, 65, or 74 Hz; Watson GM, Mire P, Hudson RR. 1998. J Exp Zool 281:582-593) sensitize discharge for at least 90 sec. Very few complete cycles of vibration are sufficient to sensitize discharge. However, as the number of cycles of vibration is increased, discharge is sensitized in rhythmic patterns. Computer analysis of the data by fast Fourier transforms indicates discharge to vibrations at 65 Hz is sensitized every 6.75 cycles. At 51 Hz discharge is sensitized every 2.00 cycles. At 74 Hz, discharge is sensitized in a polyrhythm occurring every 4.26, 3.76, 2.46, and 2. 10 cycles, respectively. At 55 Hz, discharge is sensitized in a polyrhythm occurring every 6.09, 3.20, 2.91, and 2.0 cycles, respectively. Apparently, cells in the neuronal pathway interconnecting anemone hair bundles with cnidocytes count cycles of vibration and then sensitize discharge or not according to the tally. J. Exp. Zool. 286:262-269, 2000.  相似文献   

7.
Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents’ target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.  相似文献   

8.
The females of the palaearctic digger wasp species Liris niger hunt crickets (e.g., Acheta domesticus) as food for their future brood. The wasps paralyze the prey by injecting their venom directly into each of the three thoracic ganglia and the suboesophageal ganglion. This study describes the effects produced by the Liris venom at the level of the intact prey animal (by chronic electromyogram) and at the level of a dissected preparation (by extra- and intracellular records) during the immediate action. Natural or artificial injections of the Liris venom into various ganglia revealed that: (a) The venom injection induced an about 15- to 35-s long tonical discharge of the neurons located in the stung ganglion. This discharge is usually accompanied by convulsions of the prey's limbs. (b) Subsequently, the generation and propagation of action potentials are blocked for up to 30 min (total paralysis). (c) During total paralysis, the venom blocks synaptic transmission. (d) The effects of the venom are restricted to the stung ganglion. Responses of mechanoreceptors in the legs can be recorded from the peripheral nerves of the stung ganglion during the whole period of total paralysis. (e) The neurons almost completely recover after this period. The venom does not selectively affect leg motoneurons, but affects any neuron (e.g., internerneurons or neurosecretory neurons) in any part of the central nervous system of the prey where it was released.  相似文献   

9.
Knowledge about the neuronal pathways of the taste system is interesting both for studying taste coding and appetitive learning of odours. We here present the morphology of the sensilla styloconica on the proboscis of the moth Heliothis virescens and the projections of the associated receptor neurones in the central nervous system. The morphology of the sensilla was studied by light microscopy and by scanning- and transmission electron microscopy. Each sensillum contains three or four sensory neurones; one mechanosensory and two or three chemosensory. The receptor neurones were stained with neurobiotin tracer combined with avidin-fluorescein conjugate, and the projections were viewed in a confocal laser-scanning microscope. The stained axons entered the suboesophageal ganglion via the maxillary nerves and were divided into two categories based on their projection pattern. Category one projected exclusively ipsilaterally in the dorsal suboesophageal ganglion/tritocerebrum and category two projected bilaterally and more ventrally in the suboesophageal ganglion confined to the anterior surface of the neuropil. The bilateral projecting neurones had one additional branch terminating ipsilaterally in the dorsal suboesophageal ganglion/tritocerebrum. A possible segregation of the two categories of projections as taste and mechanosensory is discussed.  相似文献   

10.
Summary The activation and action of the octavolateralis efferent system was studied by chronic recordings of discharge patterns from putative efferent and single primary afferent neurons in alert, free-swimming toadfish. Efferent axons isolated in the anterior lateral line nerve showed phasic discharges following touch stimuli applied to the head or trunk and demonstrated sustained discharges to visual stimuli. Resting discharge patterns of primary afferents were categorized into irregular, burster, regular, and silent classes. Afferent discharges were often modulated by low frequency (< 1 Hz) water movement around the head generated during respiratory movements. When fish with recording electrodes implanted in the lateral line nerve were visually stimulated, modulated peak discharges and average (DC) firing rates were inhibited in irregular-type units only. Inhibition of irregular-type afferent neurons also followed visual presentation of natural prey and persisted long after prey stimuli were removed from view. The inhibitory action upon lateralis afferents when activated by biologically significant visual stimuli leads to the hypothesis that the octavolateralis efferent system functions in the peripheral processing of information carried by the lateral line in natural settings.Abbreviations DC average - IO infraorbital - IPSPs inhibitory postynaptic potentials - MXC maxillary canal - OMC operculomandibular canal - SOC supraorbital canal  相似文献   

11.
Summary In Manduca sexta larvae, sensory neurons innervating planta hairs on the tips of the prolegs make monosynaptic excitatory connections with motoneurons innervating proleg retractor muscles. Tactile stimulation of the hairs evokes reflex retraction of the proleg. In this study we examined activity-dependent changes in the amplitude of the excitatory postsynaptic potentials (EPSPs) evoked in a proleg motoneuron by stimulation of individual planta hair sensory neurons. Deflection of a planta hair caused a phasic-tonic response in the sensory neuron, with a mean peak instantaneous firing frequency of >300 Hz, and a tonic firing rate of 10–20 Hz. Direct electrical stimulation was used to activate individual sensory neurons to fire at a range of frequencies including those observed during natural stimulation of the hair. At relatively low firing rates (e.g., 1 Hz), EPSP amplitude was stable indefinitely. At higher instantaneous firing frequencies (>10 Hz), EPSPs were initially facilitated, but continuous stimulation led rapidly to synaptic depression. High-frequency activation of a sensory neuron could also produce post-tetanic potentiation, in which EPSP amplitude remained elevated for several min following a stimulus train. Facilitation, depression, and post-tetanic potentiation all appeared to be presynaptic phenomena. These activity-dependent changes in sensory transmission may contribute to the behavioral plasticity of the proleg withdrawal reflex observed in intact insects.Abbreviations ACh acetylcholine - AChE acetylcholine esterase - CNS central nervous system - EPSP excitatory postsynaptic potential - I h injected hyperpolarizing current - LTP long-term potentiation - PPR principal planta retractor motoneuron - PTP post-tetanic potentiation - R in input resistance - V h hyperpolarized potential - V m membrane potential - VN ventral nerve - VNA anterior branch of the ventral nerve - V r resting potential.  相似文献   

12.
This study compares the effects of convective and radiant heat on the discharge rates of the warm cell of a thin hair-like sensillum of the tick and of the cold cells of small peg-shaped sensilla of the locust and the cockroach. The temperature rates imposed by the convective heat contained in the air stream used for stimulation are reflected by the discharge rate of the thermoreceptors. We determined the increment in radiant heat that results in the same change in discharge rate as a given increment in temperature due to convection. The amount of infrared radiation required to produce the same effect as a 1 degrees C change in temperature differs for the sensory cells of the tick, locust and cockroach, respectively, suggesting differences in the ability of the sensilla to take up and transfer radiant heat. The power of radiation required to modulate the discharge rates is very high and outside the biologically meaningful range in all cases. Obviously the adequate stimulus for the examined sensilla is convective heat and not radiant heat.  相似文献   

13.
Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500?nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.  相似文献   

14.
Response Properties of a Sensory Hair Excised from Venus''s Flytrap   总被引:2,自引:0,他引:2  
Multicellular sensory hairs were excised from the leaf of Venus's flytrap, and the sensory cells were identified by a destructive dissection technique. The sensory layer includes a radially symmetrical rosette of 20–30 apparently identical cells, and the sensory cells are organized in a plane normal to the long axis of the sensory hair. The sensory cells were probed with intracellular glass electrodes. The resting membrane potential was about -80 mv, and the response to a mechanical stimulus consisted of a graded response and an "action potential." The action potential appears to be similar to the action potential which propagates over the surface of the leaf. In the absence of stimulation, the upper and lower membranes of a single sensory cell behave in an electrically symmetrical fashion. Upon stimulation, however, the upper and lower membranes become electrically asymmetrical. Limiting values for the response asymmetry were calculated on the hypothesis of an electrical model consistent with the histology of the sensory cells.  相似文献   

15.
The sensory inputs to the common inhibitory motoneuron that innervates every leg muscle of the crayfish Procambarus clarkii (Girard) were analyzed by performing intracellular recordings from its neurite within the neuropil of the 5th thoracic ganglion. Two types of sensory inputs involved in locomotion were studied, those from a movement coding proprioceptor (the coxobasal chordotonal organ) and those from sensory neu rons coding contact forces exerted at the tip of the leg on the substrate (the dactyl sensory afferents). Sinusoidal movements applied to the chordotonal organ strand induced a stable biphasic response in the common inhibitory motoneuron that consisted of bursts of spikes during release and stretch of the strand, corresponding to raising and lowering of the leg, respectively. Using ramp movements imposed on the chordotonal strand, we demonstrated that only movement-coding chordotonal afferents produce excitatory post-synaptic potentials in the common inhibitory motoneuron; these connections are monosynaptic. Mechanical or electrical stimulation of the dactyl sensory afferents resulted in an increase in the tonic discharge of the common inhibitory motoneuron through polysynaptic excitatory pathways. These two types of sensory cues reinforce the central command of the common inhibitory motoneuron and contribute to enhancing its activity during leg movements, and thus facilitate the relaxation of tonic muscle fibres during locomotion.Abbreviations ADR anterior distal root - A Lev anterior levator nerve - CB coxo-basipodite joint - CBCO coxo-basal chordotonal organ - CI common inhibitory motoneuron - Dep depressor nerve - DSA dactyl sensory afferents - EPSP excitatory post-synaptic potential - IN interneuron - MN motoneuron - PDR posterior distal root - P Lev posterior levator nerve - Pro promotor nerve - Rem remotor nerve  相似文献   

16.
In the ant genus Diacamma, all workers eclose from their cocoons with little clublike thoracic appendages, called gemmae. Whether these gemmae are mutilated determines individual behaviour, and ultimately reproductive role, in two of the three species examined. The gemmae are covered with sensory hairs, which probably serve a mechanoreceptive function. The sensory afferents arising from these hairs were stained and traced into the central nervous system (CNS). They feature widely distributed collaterals invading all three thoracic ganglia as well as the suboesophageal and the second abdominal ganglia. The multisegmental arborization pattern of the gemma afferents is very similar to that of wing-hair afferents of other ants (queens and males) or other insects in general. This implies that gemmae and wings are homologous structures. We discuss the morphology of the gemma afferents with respect to their possible involvement in the behavioural changes associated with mutilation. The neuronal processing may be modulated by (1) the decrease of sensory input onto interneurons (suggested by the afferents' extensive arborizations); or (2) by the effect of neuromodulatory substances (suggested by the finding that terminals occur within the cell body rind of the ganglion).  相似文献   

17.
Summary The electrical activity of the heart nerve and of single neurons in the suboesophageal ganglia were recorded during tactile stimulation of the heart. 15 neurons were identified which responded to heart stimulation by inhibiting or accelerating activity. Cells influenced by heart afferents are scattered in the visceral and in the right and left parietal ganglia.In most of the cases both decrease and increase of cell activity are caused by synaptic potentials, in some cases, however, the neuron is assumed to have a sensory character.The activity of three neurons influenced by heart stimulation was conducted into the heart nerve. These cells are central neurons of a heart-CNS-heart reflex.Some of the neurons located in the right parietal and visceral ganglia have no connection with the mechanoreceptors of the heart. Since their spikes propagate into the heart nerve, they probably take part in the extracardial regulation of heart activity.One of the neurons located in the visceral ganglion (cell V12) sends its axon into the heart nerve. The response of this neuron to heart stimulation was an increase in activity and an inhibition of the heart rate. This is an inhibitory neuron of the extracardial heart regulatory system.  相似文献   

18.
The cercus of the first instar cockroach, Periplaneta americana, bears two filiform hairs, lateral (L) and medial (M), each of which is innervated by a single sensory neuron. These project into the terminal ganglion of the CNS where they make synaptic connections with a number of ascending interneurons. We have discovered mutant animals that have more hairs on the cercus; the most typical phenotype, called "Space Invader" (SI), has an extra filiform hair in a proximo-lateral position on one of the cerci. The afferent neuron of this supernumerary hair (SIN) "invades the space" occupied by L in the CNS and makes similar synaptic connections to giant interneurons (GIs). SIN and L compete for these synaptic targets: the size of the L EPSP in a target interneuron GI3 is significantly reduced in the presence of SIN. Morphometric analysis of the L afferent in the presence or absence of SIN shows no anatomical concomitant of competition. Ablation of L afferent allows SIN to increase the size of its synaptic input to GI3. Less frequently in the mutant population, we find animals with a supernumerary medical (SuM) sensillum. Its afferent projects to the same neuropilar region as the M afferent, makes the same set of synaptic connections to GIs, and competes with M for these synaptic targets. The study of these competitive interactions between identified afferents and identified target interneurons reveals some of the dynamic processes that go on in normal development to shape the nervous system.  相似文献   

19.
This paper reports on directional response properties of saccular afferents of the sleeper goby, Dormitator latifrons, to 100-Hz acoustic particle motions with a focus on testing the hypothesis that the response directionality of a fish's auditory afferents derives from the morphological polarity of sensory hair cells in the otolithic organs. Spontaneous rates (SR) and best sensitivities (BS) of saccular afferents ranged from 0 to 162 spikes/sec and from 0.2- to 100-nm RMS displacement. SR did not vary with BS. Most saccular afferents were phase-locked to sinusoidal stimulation and had sustained temporal response patterns with some adaptation. All saccular afferents were directionally sensitive to the stimulus, and the sharpness of directional response curves was determined by a directionality index (DI). The DI ranged from 0.64 to 1.50 (mean=1.02, SE=0.02, n=100) and gradually decreased with stimulus level throughout afferents' response dynamic range. Many afferents had approximately symmetric directional response curves relative to their best response axes (BRA). BRA of most afferents remained constant with stimulus level. The BRA distribution had a peak along an axis that correlates closely with the morphological polarity of saccular hair cells. Therefore, our results strongly support the hypothesis. Accepted: 19 December 1997  相似文献   

20.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号