首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intestinal protozoan pathogen Entamoeba histolytica lacks mitochondria and derives energy from the fermentation of glucose to ethanol with pyruvate, acetyl enzyme Co-A, and acetaldehyde as intermediates. A key enzyme in this pathway may be the 97-kDa bifunctional E. histolytica alcohol dehydrogenase 2 (EhADH2), which possesses both alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase activity (ALDH). EhADH2 appears to be a fusion protein, with separate N-terminal ALDH and C-terminal ADH domains. Here, we demonstrate that EhADH2 expression is required for E. histolytica growth and survival. We find that a mutant EhADH2 enzyme containing the C-terminal 453 amino acids of EhADH2 has ADH activity but lacks ALDH activity. However, a mutant consisting of the N-terminal half of EhADH2 possessed no ADH or ALDH activity. Alteration of a single histidine to arginine in the putative active site of the ADH domain eliminates both ADH and ALDH activity, and this mutant EhADH2 can serve as a dominant negative, eliminating both ADH and ALDH activity when co-expressed with wild-type EhADH2 in Escherichia coli. These data indicate that EhADH2 enzyme is required for E. histolytica growth and survival and that the C-terminal ADH domain of the enzyme functions as a separate entity. However, ALDH activity requires residues in both the N- and C-terminal halves of the molecule.  相似文献   

2.
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.  相似文献   

3.
The alcohol dehydrogenase gene (ADH1) of Candida utilis ATCC9950 was cloned and expressed in recombinant Escherichia coli. C. utilis ADH1 was obtained by PCR amplification of C. utilis genomic DNA using two degenerate primers. Amino acid sequence analysis of C. utilis ADH1 indicated that it contained a zinc-binding consensus region and a NAD(P)+-binding site, and lacked a mitochondrial targeting peptide. It has a 98 and 73% identity with ADH1s of C. albicans and Saccharomyces cerevisiae, respectively. Amino acid sequence analysis and enzyme characterization with various aliphatic and branched alcohols suggested that C. utilis ADH1 might be a primary alcohol dehydrogenase existing in the cytoplasm and requiring zinc ion and NAD(P)+ for reaction.  相似文献   

4.
为了从酿酒酵母Saccharomyces cerevisiae中克隆出乙醇脱氢酶2(Alcoholdehy drogenase2,ADH2)基因并使之在大肠杆菌中高效表达。以酿酒酵母细胞中提取的总RNA为模板,通过反转录获得酿酒酵母乙醇脱氢酶2基因,连接到表达载体pTAT上,得到重组表达质粒pTAT-ADH2,将此重组质粒转化到大肠杆菌BL21中,重组工程菌株经IPTG诱导表达得到ADH2蛋白。将该蛋白纯化后,在体外进行活性检测和小鼠体内进行毒理试验,检测ADH2的酶活性。测序结果表明克隆的基因与GenBank中所报道的adh2基因序列有90%的同源性,经SDS-PAGE电泳分析,目的蛋白得到了有效表达,蛋白条带扫描分析表明,表达量占总蛋白的50%左右,纯化得到的蛋白在小鼠体内进行毒理试验,显示出一定的活性。酿酒酵母adh2基因的克隆正确,不仅在大肠杆菌中进行了高效表达而且表现出了较好的酶活性。  相似文献   

5.
The nucleotide sequence of a 1619-bp fragment of Mycobacterium bovis BCG containing the gene that encodes an alcohol dehydrogenase (ADH) has been determined. The M(r) calculated from the deduced amino acid (aa) sequence, as well as the N terminus, are in good accordance with those determined for the ADH purified from M. bovis BCG extracts. The M. bovis BCG cloned adh gene was expressed in Escherichia coli by its own promoter and the synthesized product shows ADH activity in the butane-1-ol-NADP system. Based on comparison of the aa sequence, this enzyme belongs to the zinc-containing, long-chain alcohol/polyol dehydrogenase family, which has been primarily described in eukaryotes. Of the 22 strictly conserved residues in this group, 19 are also conserved in M. bovis BCG ADH (BCGADH).  相似文献   

6.
N-Acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)app values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates.  相似文献   

7.
The primary structure of Escherichia coli L-threonine dehydrogenase   总被引:2,自引:0,他引:2  
The complete primary structures of Escherichia coli L-threonine dehydrogenase has been deduced by sequencing the cloned tdh gene. The primary structure so determined agrees with results obtained independently for the amino acid composition, the N-terminal amino acid sequence (20 residues), and a short sequence at the end of an internal peptide of the purified enzyme. The presence of a predicted Asp-Pro bond at residues 148 and 149 was confirmed by treatment of purified threonine dehydrogenase with dilute acid and subsequent analysis of the resulting cleavage products. The primary structure of L-threonine dehydrogenase from E. coli has been examined for possible homology to other NAD+-dependent dehydrogenases; indications are that this enzyme is a member of the zinc-containing long-chain alcohol/polyol dehydrogenase family.  相似文献   

8.
Methanol dehydrogenase from the thermotolerant Bacillus sp. C1 was studied by electron microscopy and image processing. Two main projections can be distinguished: one exhibits 5-fold symmetry and has a diameter of 15 nm, the other is rectangular with sides of 15 and 9 nm. Subsequent image processing showed that the 5-fold view possesses mirror symmetry. The rectangular views can be divided into two separate classes, one of which has 2-fold rotational symmetry. It is concluded that methanol dehydrogenase is a decameric molecule, and a tentative model is presented. The estimated molecular weight is 430,000, based on a subunit molecular weight of 43,000. The enzyme contains one zinc and one to two magnesium ions per subunit. N-terminal amino acid sequence analysis revealed substantial similarity with alcohol dehydrogenases from Saccharomyces cerevisiae, Zymomonas mobilis, Clostridium acetobutylicum, and Escherichia coli, which contain iron or zinc but no magnesium. In view of the aberrant structural and kinetic properties, it is proposed to distinguish the enzyme from common alcohol dehydrogenases (EC 1.1.1.1) by using the name NAD-dependent methanol dehydrogenase.  相似文献   

9.
An NAD+-dependent alcohol dehydrogenase (ADH) was purified to homogeneity from an aerobic strain of Bacillus stearothermophilus, DSM 2334 (ADH 2334), and compared with the ADH from B. stearothermophilus NCA 1503 (ADH 1503). When an antibody raised against ADH 2334 was used, no cross-reactivity with ADH 1503 was observed on Western blots; by means of an enzyme-linked-immunoabsorbent-assay ('e.l.i.s.a.') procedure, it was found that ADH 1503 had less than 6% of the antigenic activity of ADH 2334. Amino acid analyses detected very small differences in composition, equivalent to about 40 sequence changes, between the two enzymes. The new enzyme has the same six-amino-acid N-terminal sequence as ADH 1503. ADH 2334, but not ADH 1503, is reactive towards methanol; both enzymes can oxidize ethanol, propan-1-ol, butan-1-ol and butan-2-ol. The new enzyme has a distinctive pH optimum at pH 5.5-6 and has significantly lower KEthanolm and kEthanolcat. values than those of ADH 1503. From steady-state kinetic parameters of the reaction with ethanol, propan-1-ol and butan-1-ol, it was shown that ADH 2334 has an ordered mechanism in both directions, with NAD+ being the compulsory first substrate in alcohol oxidation and NADH release being the rate-limiting step. ADH 1503 has an ordered addition of NAD+ and alcohol, but NADH release is not rate-limiting.  相似文献   

10.
In this study, we identified and characterized mitochondrial alcohol dehydrogenase 3 from the thermotolerant methylotrophic yeast Hansenula polymorpha (HpADH3). The amino acid sequence of HpADH3 shares over 70% of its identity with the alcohol dehydrogenases of other yeasts and exhibits the highest similarity of 91% with the alcohol dehydrogenase 1 of H. polymorpha. However, unlike the cytosolic HpADH1, HpADH3 appears to be a mitochondrial enzyme, as a mitochondrial targeting extension exists at its N terminus. The recombinant HpADH3 overexpressed in Escherichia coli showed similar catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The HpADH3 displayed substrate specificities with clear preferences for medium chain length primary alcohols and acetaldehyde for an oxidation reaction and a reduction reaction, respectively. Although the H. polymorpha ADH3 gene was induced by ethanol in the culture medium, both an ADH isozyme pattern analysis and an ADH activity assay indicated that HpADH3 is not the major ADH in H. polymorpha DL-1. Moreover, HpADH3 deletion did not affect the cell growth on different carbon sources. However, when the HpADH3 mutant was complemented by an HpADH3 expression cassette fused to a strong constitutive promoter, the resulting strain produced a significantly increased amount of ethanol compared to the wild-type strain in a glucose medium. In contrast, in a xylose medium, the ethanol production was dramatically reduced in an HpADH3 overproduction strain compared to that in the wild-type strain. Taken together, our results suggest that the expression of HpADH3 would be an ideal engineering target to develop H. polymorpha as a substrate specific bioethanol production strain.  相似文献   

11.
Summary Insertion of the transposable element Ty at the ADH4 locus results in increased levels of a new alcohol dehydrogenase (ADH) activity in Saccharomyces cerevisiae. The DNA sequence of this locus has been determined. It contains a long open reading frame which is not homologous to the other ADH isozymes that have been characterized in S. cerevisiae nor does it show obvious homology to Drosophila ADH. The hypothetical ADH does, however, show strong homology to the sequence of an iron-activated ADH from the bacterium Zymomonas mobilis. Thus ADH4 appears to encode an ADH structural gene which, along with the Zymomonas enzyme, may define a new family of alcohol dehydrogenases.Now The Plant Cell Research Institute, Inc., 6560 Trinity Court, Dublin, CA 94568, USA  相似文献   

12.
Because of the severe limitations on growing large quantities of Drosophila affinidisjuncta in the laboratory, direct purification of alcohol dehydrogenase (ADH) from this species has proven impossible. As an alternative source of this enzyme, a cDNA encoding functional ADH was isolated from a newly constructed cDNA library made from larval poly(A)-containing RNA. The cDNA was recovered by virtue of its hybridization to a previously isolated genomic ADH gene. Nucleotide sequence analysis confirmed the identity of the newly isolated cDNA. When the cDNA was inserted in the proper orientation downstream of the lac promoter on the vector pUC8, the cDNA directed the synthesis of functional ADH by the bacterial host. The bacterially produced enzyme was purified to homogeneity and used to elicit polyclonal antibodies in rabbits. The purified ADH has identical apparent subunit molecular weight to that of authentic ADH in larval fly extracts as determined by immunoblotting. Further, comparisons of the kinetic parameters of the bacterially produced enzyme and ADH activity in larval fly extracts indicate similar substrate preferences, pH dependencies, and Km values for 2-propanol and NAD. These results show that expression of a cDNA in Escherichia coli is a valid strategy for isolation of an ADH that would otherwise be difficult or impossible to purify.  相似文献   

13.
14.
An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.  相似文献   

15.
The nucleotide sequence of a 2081-bp fragment of Clostridium acetobutylicum DNA containing the adh1 gene was determined. The butanol dehydrogenase gene is referred to as the adh1 gene since it was shown to have activity using butanol and ethanol as substrates. The adh1 gene consisted of 1164 bp and encoded an alcohol dehydrogenase (ADH) enzyme of 388 aa residues with an Mr of 43,274. The adh1 gene was separated from an upstream open reading frame by an intergenic region of 354 bp. No promoter consensus sequences were identified in the intergenic upstream region and the adh1 gene did not appear to be expressed off its own promoter in Escherichia coli. Three separate types of ADH have been recognized. The ADH1 from C. acetobutylicum exhibited 39% homology with the Fe-containing ADH2 from Zymomonas mobilis and 37% homology with the ADH4 from Saccharomyces cerevisiae, but showed little or no homology with the other characterised types of ADH.  相似文献   

16.
17.
通育粳1号水稻乙醇脱氢酶基因克隆与原核表达   总被引:1,自引:0,他引:1  
克隆通育粳1号水稻乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,并在原核系统中进行体外表达。取通育粳1号水稻幼根,提取总RNA,RT-PCR法扩增ADH基因开放阅读框架片段,双酶切后连接至pGEX-4T-1表达质粒中。将质粒转化至BL21(DE3)宿主菌中,平皿培养,挑取阳性菌落培养,提取重组质粒,酶切、电泳鉴定插入片段并测定其序列。pGEX-4T-1-ADH/BL21进行常规LB扩大培养,IPTG(1 mmol/L)作用2、3和4 h诱导表达,SDS-PAGE检测表达产物。结果显示,插入质粒中的ADH片段序列和方向正确无误,表达蛋白分子量符合预期值42 kD,表达至最大值的诱导时间为3 h。因此,该基因的成功克隆和表达为进一步研究水稻中ADH的作用和应用生物工程法大量获得ADH奠定基础。  相似文献   

18.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

19.
Adhfn23 and Adhfn24 are two formaldehyde-induced, homozygous-viable, alcohol dehydrogenase-null mutants that bear lesions in the gene that codes for the alcohol dehydrogenase (ADH; EC 1.1.1.1) of Drosophila melanogaster. Adhfn23 contains a 34-base pair deletion in the C-terminal coding region of the alcohol dehydrogenase structural gene. By immunological and molecular analysis, we show that the deletion shifts the translation reading frame and results in a prematurely truncated polypeptide product (10 amino acids shorter than wild type) that cross-reacts with antibody raised against ADH. The steady-state level of alcohol dehydrogenase mRNA present in this mutant is close (97%) to that in the wild type, but the steady-state level of alcohol dehydrogenase-like protein is 50% lower. Moreover, the rate of alcohol dehydrogenase synthesis in Adhfn23 flies is reduced to 60% of that found in the wild type. Hence both the rate of synthesis and the rate of degradation of alcohol dehydrogenase are affected. In contrast, Adhfn24 which contains an 11-base pair deletion in the N-terminal coding region of the ADH gene, synthesizes no immunodetectable protein, and the amount of alcohol dehydrogenase mRNA is less than half that of wild-type flies. As with Adhfn23, the deletion in Adhfn24 results in a change in the reading frame. Unlike Adhfn23, however, nucleic acid sequence data indicate that polypeptide chain elongation can proceed for a considerable distance (over 130 amino acids) beyond the deletion. Based upon antigenic binding-site predictions, the resultant aberrant protein (projected 195 amino acids in length) would share few antigenic sites with the alcohol dehydrogenase from the wild type, which may account for the lack of immunoprecipitable material in this mutant. The contrasting effects these two deletions have on the Drosophila ADH mRNA levels and ADH protein levels are discussed.  相似文献   

20.
A thermostable alcohol dehydrogenase (ADH-I) isolated from the potential thermophilic ethanologen Geobacillus thermoglucosidasius strain M10EXG has been characterised. Inverse PCR showed that the gene (adhI) was localised with 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3 hexuloisomerase (PHI) on its genome. The deduced peptide sequence of the 1020-bp M10EXG adhI, which corresponds to 340 amino acids, shows 96% and 89% similarity to ADH-hT and ADH-T from Geobacillus stearothermophilus strains LLD-R and NCA 1503, respectively. Over-expression of M10EXG ADH-I in Escherichia coli DH5alpha (pNF303) was confirmed using an ADH activity assay and SDS-PAGE analysis. The specific ADH activity in the extract from this recombinant strain was 9.7(+/-0.3) U mg(-1) protein, compared to 0.1(+/-0.01) U mg(-1) protein in the control strain. The recombinant E. coli showed enzymatic activity towards ethanol, 1-butanol, 1-pentanol, 1-heptanol, 1-hexanol, 1-octanol and 2-propanol, but not methanol. In silico analysis, including phylogenetic reconstruction and protein modeling, confirmed that the thermostable enzyme from G. thermoglucosidasius is likely to belong to the NAD-Zn-dependent family of alcohol dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号