首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

2.
Fractionation of proteoglycans from bovine corneal stroma.   总被引:4,自引:0,他引:4       下载免费PDF全文
Proteoglycans were extracted from bovine corneal stroma with 4M-guanidinum chloride, purified by DEAE-dellulose chromatography (Antonopoulos et al., 1974) and fractionated by precipitation with ethanol into three fractions of approximately equal weight. One of these fractions consisted of a proteoglycan that contained keratan sulphate as the only glycosaminoglycan. In the othertwo fractions proteoglycans that contained chondroitin sulphate, dermatan sulphate and keratan sulphate were present. Proteoglycans which had a more than tenfold excess of galactosaminoglycans over keratan sulphate could be obtianed by further subfractionation. The gel-chromatographic patterns of the glucosaminoglycans before and after digestion with chondroitinase AC differed for the fractions. The individual chondroitin sulphate chains seemed to be larger in cornea than in cartilage. Oligosaccharides, possibly covalently linked to the protein core of the proteoglycans, could be isolated from all fractions. The corneal proteoglycans were shown to have higher protein contents and to be of smaller molecular size than cartilage proteoglycans.  相似文献   

3.
Proteoglycan monomers from guinea-pig costal cartilage, bovine nasal and bovine tracheal cartilage were observed in the electron microscope after being spread in a monomolecular layer with cytochrome c. The proteoglycan molecule appeared as an extended central core filament to which side-chain filaments were attached at various intervals. The molecules from the three sources displayed great ultrastructural similarities. On average, the core filament was about 290 nm long, there were about 25 side-chain filaments per core filament, the side-chain filaments were about 45 nm long, and the distance between the attachment points of the side-chain filaments to the core filament was about 11 nm. With regard to the overall size of the molecules, no evidence of distinct subpopulations was obtained. Good correlation was found between ultrastructural data for the proteoglycan molecules and chemical data obtained by enzyme digestions and gel chromatography. Together these data strongly support the interpretation of the electron-microscopic pictures as indicating a central filament corresponding to the protein core and side-chain filaments corresponding to the chondroitin sulphate chain clusters of the proteoglycan monomers.  相似文献   

4.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

5.
The kinetics of incorporation of [(35)S]sulphate into slices of pig laryngeal cartilage in vitro was linear with time up to 6h. The specific radioactivities of the extracted proteoglycans (containing about 80% of the uronic acid of the cartilage) and the glycosaminoglycans remaining in the tissue after extraction were measured after various times of continuous and ;pulse-chase' radioactivity incorporation. Radioactivity was present in the isolated chondroitin sulphate after 2 min, but there was a 35min delay in its appearance in the extractable proteoglycan fraction. Fractionation of the proteoglycans by gel chromatography showed that the smallest molecules had the highest specific radioactivity, but ;pulse-chase' experiments over 5h did not demonstrate any precursor-product relationships between fractions of different size. Equilibrium density-gradient centrifugation in 4m-guanidine hydrochloride showed that among the proteoglycan fractions the specific radioactivity increased as the chondroitin sulphate content decreased, but with preparations from ;pulse-chase' experiments there was again no evidence for precursor-product relationships between the different fractions. Differences in radioactive incorporation would seem to reflect metabolic heterogeneity within the proteoglycans extracted from cartilage. This may be due either to a partial separation of different types of proteoglycans or to differences in the rates of degradation of the molecules of different size and composition as a result of the nature and specificity of the normal degrading enzymes. The results suggest that molecules of all sizes were formed at the same time.  相似文献   

6.
The proteoglycans of the canine intervertebral disc   总被引:3,自引:0,他引:3  
The high-buoyant-density proteoglycans of the nucleus pulposus and annulus fibrosus of the beagle intervertebral disc have been isolated by CsCl density gradient ultracentrifugation. The sulphated proteoglycans were labelled in vivo with 35SO4, 24 h and 60 days prior to killing. The hydrodynamic size and aggregation of the 24 h, 60 day and resident (from hexuronic acid and hexosamine analysis) proteoglycan subunit populations were determined by Sepharose CL-2B chromatography in the presence or absence of excess hyaluronic acid. The hydrodynamic size of the keratan sulphate-proteoglycan core protein complexes were also determined by Sepharose CL-2B chromatography after chondroitinase ABC digestion of proteoglycans. When initially synthesised (24 h) or after 60 days, the percentage aggregation and hydrodynamic size of the proteoglycans derived from the annulus fibrosus were larger than those present in the nucleus pulposus. Hexosamine, hexuronic and protein determination of the high-buoyant-density fractions showed that the proteoglycans of the nucleus pulposus were richer in chondroitin sulphate than those in the annulus. However there was no difference in Mr of the chondroitin sulphate and keratan sulphate attached to the proteoglycans of the two disc regions, nor were differences detected by HPLC between the proportions of chondroitin 4-sulphate and chondroitin 6-sulphate present in these high-density fractions. In contrast, the low-buoyant-density (1.54 greater than p greater than 1.45) proteoglycan fractions and tissue residues remaining after 4 M GuHCl extraction were found to contain dermatan sulphate, suggesting the presence of a third proteoglycan species possibly associated with the collagen of the fibrocartilagenous matrix.  相似文献   

7.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

8.
Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.  相似文献   

9.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   

10.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

11.
In this article, proteoglycans from embryonic chick leg muscle are quantitatively and qualitatively compared with day 8 high density cell culture cartilage proteoglycans by electron microscopy of proteoglycan-cytochrome c monolayers. The visualized proteoglycan profiles were separated into four categories according to shape, size, and complexity. The two major categories were further characterized by lengths of core proteins, lengths of side projections, and distance between side projections. Two large proteoglycans are identifiable in spread leg muscle preparations. One group has a core protein (mean length of 205 nm) from which extend long thin side projections that we interpret to be groups of chondroitin sulfate glycosaminoglycans with a mean length of 79 nm. This large chondroitin sulfate proteoglycan is the only type found in muscle cultures as determined both biochemically in the past and now by electron microscopy and is referred to as muscle proteoglycan. The second large proteoglycan has a mean core protein length of 250 nm and side projections that are visibly shorter (mean length of 38 nm) and thicker than those of the muscle proteoglycan. This group is referred to as the mesenchymal proteoglycan since its biosynthetic origin is still uncertain. We compare these two profiles with the chick cartilage chondroitin sulfate proteoglycan that has a mean core protein length of 202 nm and side projections with a mean length of 50 nm. The data presented here substantiate the earlier biochemical characterization of these noncartilage proteoglycans and establish the unique structural features of the muscle proteoglycan as compared with the similar profiles of the cartilage and mesenchymal proteoglycans.  相似文献   

12.
By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.  相似文献   

13.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

14.
Articular-cartilage proteoglycans in aging and osteoarthritis.   总被引:10,自引:5,他引:5       下载免费PDF全文
The composition of macroscopically normal hip articular cartilage obtained from dogs of various ages was studied. Pieces of cartilage with signs of degeneration were studied separately. In normal aging, the extraction yield of proteoglycans decreased; the keratan sulphate content of extracted proteoglycans increased and the chondroitin sulphate content decreased. The extracted proteoglycans were smaller in the older cartilage, mainly owing to a decrease in the chondroitin sulphate-rich region of the proteoglycan monomers. The hyaluronic acid-binding region and the keratan sulphaterich region were increased and the molar concentration of proteoglycan probably increase with increasing age. The degenerated cartilage had higher water content and the proteoglycans, as well as other tissue components, gave higher yields. The proteoglycan monomers from the degenerated cartilage were smaller than those from normal cartilage of the same age, and hence had a smaller chondroitin sulphate-rich region and some of the molecules also appeared to lack the hyaluronic acid-binding region. Increased proteolytic activity may be involved in the process of cartilage degeneration.  相似文献   

15.
Explants of cartilage from tibiae of 11-12 days chick embryos were grown in organ culture. To one group hyaluronidase was added to the medium during the first 2 days of culture; the treated tissue was then cultured in medium without enzyme for a further 4 days. Control explants grown in hyaluronidase-free medium for 6 days grew rapidly in size and the total hexosamine content more than doubled during this time. After exposure to hyaluronidase, much of the hexosamine was lost from treated cartilage and appeared in the culture medium, but it was mostly replaced in the tissue during the subsequent recovery period. Analysis of cartilage and medium showed that net synthesis of hexosamine increased greatly in treated cartilage. The proteoglycans were extracted by two procedures from control and treated cartilage after 2, 4 and 6 days in culture. The hydrodynamic sizes of the purified proteoglycans were compared by gel chromatography and the composition of the gel-chromatographic fractions was determined. The proteoglycans from controls did not change during culture, but after exposure to hyaluronidase the proteoglycans from treated cartilage were of much smaller size and lower chondroitin sulphate content. During recovery, even though new proteoglycans were formed, they were nevertheless of smaller size and lower chondroitin sulphate content than control proteoglycans. They gradually became more like control proteoglycans during recovery from treatment, but even after 4 days they were not yet the same. After 2 days of treatment with the enzyme, the chondroitin sulphate in the cartilage was of shorter chain length than in controls but during recovery after 4 and 6 days in culture, the chain lengths in control and treated cartilage were similar. It is concluded that the proteoglycans formed in embryo cartilage in response to their depletion by enzyme treatment contained fewer chondroitin sulphate chains attached to the protein moiety of proteoglycans. This may have resulted from a failure under stress to glycosylate the protein moiety to the usual extent; alternatively the synthesis of normal proteoglycans of low chondroitin sulphate content may have increased, thus changing the proteoglycan population.  相似文献   

16.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns. The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows. The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow. The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

17.
The synthesis of proteoglycans by human T lymphocytes   总被引:1,自引:0,他引:1  
We have examined the proteoglycans produced by highly-purified cultures of human T-lymphocytes. The proteoglycans were metabolically labelled with [35S]sulphate and analysed in cellular and medium fractions using DEAE-cellulose chromatography, gel filtration and specific enzymatic and chemical degradations. The results showed that the T cells synthesized a relatively homogeneous, proteinase-resistant chondroitin 4-sulphate proteoglycan that accumulated in the culture medium during a 48 h incubation period. The cellular fraction contained a significant amount of free chondroitin sulphate chains that were not secreted into the medium. These polysaccharides were formed by intracellular degradation of proteoglycan in a chloroquine-sensitive process, indicating a requirement for an acidic environment. In contrast to chondroitin sulphate derived from proteoglycan, chondroitin sulphates synthesized on the exogenous primer, beta-D-xyloside, were mainly secreted by the cells. beta-D-Xylosides caused an 8-fold stimulation in the synthesis of chondroitin sulphate, but decreased the synthesis of proteoglycan by about 50%. These proteoglycans contained shorter chondroitin sulphate chains than their normal counterparts. The results indicate that although proteoglycans are mainly secretory components in human T-cell cultures, a specific metabolic step leads to the intracellular accumulation of free glycosaminoglycans. Separate functions are likely to be associated with the intracellular and secretory pools of chondroitin sulphate.  相似文献   

18.
The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.  相似文献   

19.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

20.
Proteoglycans of developing bone   总被引:17,自引:0,他引:17  
We purified and characterized the bone proteoglycans from fetal calves, growing rats, and human fetuses. The major proteoglycan is part of the mineralized tissue matrix and only 10-20% can be extracted prior to demineralization. This bone proteoglycan is a small glycoconjugate (Mr = 80,000-120,000) containing approximately 20-30% protein and either one or two chondroitin sulfate chains (Mr = 40,000) attached to a relatively monodisperse protein core (Mr = 38,000). "O"-linked and "N"-linked oligosaccharide units are also present. Antibodies directed against the protein core of calf bone proteoglycan do not cross-react with cartilage, skin, corneal, or basement membrane proteoglycans in immunoassays and have minimal cross-reactivity with scleral proteoglycans. Quantitative immunoassays and indirect immunofluorescence were used to show that the molecule is localized to forming bone trabeculae and dentin, but not to any other tissue. Osteoblasts and osteoprogenitor cells adjacent to areas undergoing rapid osteogenesis also contain this small proteoglycan. A second proteoglycan (Mr approximately equal to 1,000,000) was extracted from newly forming bone prior to demineralization. This large proteoglycan, which was isolated from the cartilage-free areas of developing intramembranous bone, has a protein core similar to that of the cartilage aggregating proteoglycan and cross-reacts with antisera raised against these cartilage proteoglycans but not with the small mineral-entrapped proteoglycan. It contains larger (Mr = 40,000) and fewer chondroitin sulfate chains than its cartilage-derived analogue, and is localized to the soft connective tissue mesenchyme lying between growing bone trabeculae. More fully formed compact bone did not contain detectable quantities of this proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号