首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
以冬闲-双季稻种植模式为对照(CK),分析了黑麦草-双季稻(Ry)、紫云英-双季稻(Mv)、马铃薯-双季稻(Po)和油菜-双季稻(Ra)5种不同种植模式下冬季覆盖作物秸秆还田后对0~5、5~10、10~20 cm土壤有机碳、活性有机碳、碳库管理指数和有机碳储量的影响.结果表明:与CK处理相比,黑麦草、紫云英、马铃薯和油菜秸秆还田处理均提高了稻田0~5、5~10、10~20 cm土壤总有机碳和活性有机碳含量,其中Po处理最高.冬季覆盖作物秸秆还田均提高了稻田不同层次土壤的碳库活度、碳库活度指数、碳库指数和土壤碳库管理指数,其大小顺序均表现为Po>Mv>Ry>Ra>CK.不同冬季覆盖作物秸秆还田处理与CK处理相比均有利于提高稻田不同层次土壤有机碳储量,其中以紫云英秸秆还田的效果最好,黑麦草和马铃薯次之;各处理稻田土壤有机碳储量均随土壤深度的增加而递增.  相似文献   

2.
Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolorL.) and sequester significant amount of atmospheric CO2in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops [legume (hairy vetch) (Vicia villosa roth), nonlegume (rye) (Secale cerealeL), hairy vetch/rye mixture, and winter weeds orno covercrop], and three N fertilization rates (0, 60–65, and 120–130 kg N ha –1) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain, their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 in central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha –1 but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in CT with 0 kg N ha –1. In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha –1 and in sorghum ranged from 3.4 to 7.2 Mg ha –1. Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0–10 cm depth was greater in vetch with 0 kg N ha –1 or in vetch/rye with 120–130 kg N ha –1 than in weeds with 0 and 60 kg N ha –1 but at 10–30 cm, it was greater in rye with 120–130 kg N ha –1 than in weeds with or without rate. In ST, soil organic C at 0–10 cm was greater in rye with 120–130 kg N ha –1 than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha –1. Soil organic C at 0–10 and 10–30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 60–65 kg N ha –1 can sustain C accumulation in cotton lint and sorghum grain and increase C storage in the surface soil due to increased C input from crop residues and their reduced incorporation into the soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.  相似文献   

3.
Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers.  相似文献   

4.
为探讨冬季覆盖作物还田对稻田土壤碳库的影响,通过冬季种植油菜、紫云英、黑麦草、马铃薯,并以冬闲为对照进行大田试验,测定了不同冬季作物模式下早稻和晚稻的土壤有机碳、活性有机碳含量,并计算了稳态碳、碳库活度、活度指数、碳库指数和土壤碳库管理指数.结果表明:冬季作物还田增加了土壤有机碳含量,早稻和晚稻后的土壤有机碳含量比对照分别提高了1%~8%和3%~18%;油菜、黑麦草和紫云英还田均促进了土壤活性有机碳含量的增加,早稻后增加16.2%~84.2%,晚稻后增加24.4%~28.1%;冬季作物还田增加了土壤碳库管理指数,增加幅度为1.4%~41.8%.综上所述,冬种作物还田有利于提高土壤的固碳效应,并提升土壤质量,以种植黑麦草、紫云英的综合效果较佳.  相似文献   

5.
Cover crops increase carbon (C) inputs to agricultural soils, and thus have the potential to mitigate climate change through enhanced soil organic carbon (SOC) storage. However, few studies have explored the fate of belowground C inputs associated with varying root traits into the distinct SOC pools of mineral-associated organic carbon (MAOC) particulate organic carbon (POC). Therefore, a packed 0.5 m column trial was established with 0.25 m topsoil and 0.25 m subsoil with four cover crops species (winter rye, oilseed radish, chicory, and hairy vetch) known to differ in C:N ratio and root morphology. Cover crops were 14CO2-labeled for 3 months, and then, half of the columns were sampled to quantify root and rhizodeposition C. In the remaining columns, plant shoots were harvested and the undisturbed soil and roots were left for incubation. Bulk soil from both sampling times was subjected to a simple fractionation scheme, where 14C in the <50 and >50 μm fraction was assumed to represent MAOC and POC, respectively. The fast-growing rye and radish produced the highest root C. The percentage loss of C via rhizodeposition (%ClvR) showed a distinct pattern, with 22% for the more branched roots (rye and vetch) and 6%–8% for the less branched roots (radish and chicory). This suggests that root morphology plays a key role in determining rhizodeposition C. After 1 year of incubation at room temperature, the remaining MAOC and POC were positively correlated with belowground inputs in absolute terms. However, topsoil MAOC formation efficiencies (cover crop-derived MAOC remaining as a share of belowground inputs) were higher for vetch and rye (21% and 15%, respectively) than for chicory and radish (9% and 10%, respectively), suggesting a greater importance of rhizodeposition (or indirectly, root morphology) than solely substrate C:N ratio for longer term C stabilization.  相似文献   

6.
Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.  相似文献   

7.
Rosecrance  R.C.  McCarty  G.W.  Shelton  D.R.  Teasdale  J.R. 《Plant and Soil》2000,227(1-2):283-290
N mineralization, N immobilization and denitrification were determined for vetch, rye and rye-vetch cover crops using large packed soil cores. Plants were grown to maturity from seed in cores. Cores were periodically leached, allowing for quantification of NO3 and NH4 + production, and denitrification incubations were conducted before and after cover crop kill. Gas permeable tubing was buried at two depths in cores allowing for quantification of N2O in the soil profile. Cover crops assimilated most soil N prior to kill. After kill, relative rates of N mineralization were vetch > rye-vetch mixture > fallow > rye. After correcting for N mineralization from fallow cores, net N mineralization was observed in vetch and rye-vetch cores, while net N immobilization was observed in rye cores. Denitrification incubations were conducted 5, 15 and 55 days after kill, with adjustment of cores to 75% water filled pore space (WFPS). The highest denitrification was observed in vetch cores 5 days after kill, when soil NO3 and respiration rates were high. Substantially lower denitrification was observed on subsequent measurement dates and in other treatments probably due to either limited NO3 or organic carbon in the soil. On day 5, 3%, 23%, 31% and 31% of the N2O was recovered in the headspace of fallow, vetch, rye and rye-vetch cores, respectively. The rest was stored in the soil profile. In a field study using intact soil cores, denitrification rates also peaked 1 week after cover crop kill and decreased significantly thereafter. Results suggest greater potential N losses from vetch than rye or rye-vetch cover crops due to rapid N-mineralization in conjunction with denitrification and potential leaching, prior to significant crop N-assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Xylanase activity was determined in soils from a 3-year rotation with corn, (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean (Glycine max (L) Merr.) as summer crops at Auburn, Alabama, in the southeastern U.S.A. Winter wheat (Triticum aestivum L.) followed corn and a period of winter fallow as maintained after soybeans. A combination of common vetch (vicia sativa L.) and crimson clover (Trifolium incarnatum Gibelli & Belli) followed cotton during the winter months to serve as green manure. Highest xylanase activity was detected after soybeans and lowest after cotton among the summer crops. The culture of wheat and winter legumes resulted in increased soil xylanase activity wheareas winter fallowing reduced the activity. The effect of various fertilization schemes superimeposed on the rotation on soil xylanase activity was also studied. Seasonal fluctuations in soil xylanase activity were not affected by the fertilization regimes and highest xylanase activities were observed during crop periods and with fertilization treatments that resulted in high root densities but not necessarily in high yields.  相似文献   

9.

Background and aims

Winter cover crop cultivation during the fallow season has been strongly recommended in mono-rice paddy soil to improve soil quality, but its impact in increasing the greenhouse gases (GHGs) emissions during rice cultivation when applied as green manure has not been extensively studied. In order to recommend a preferable cover crop which can increase soil productivity and suppress GHG emission impact in paddy soil, the effect of winter cover crop addition on rice yield and total global warming potential (GWP) was studied during rice cultivation.

Methods

Two cover crops (Chinese milk vetch, Astragalus sinicus L., hereafter vetch, and rye, Secale cerealis) having different carbon/nitrogen (C/N) ratios were cultivated during the rice fallow season. The fresh above-ground biomasses of vetch [25 Mg fresh weight (FW) ha?1, moisture content (MC) 86.9 %, C/N ratio 14.8] and rye (29 Mg rye FW ha?1, MC 78.0 %, C/N ratio 64.3) were incorporated as green manure 1 week before rice transplanting (NPK + vetch, and NPK + rye). The NPK treatment was installed for comparison as the control. During the rice cultivation, methane (CH4) and nitrous oxide (N2O) gases were collected simultaneously once a week using the closed-chamber method, and carbon dioxide (CO2) flux was estimated using the soil C balance analysis. Total GWP impact was calculated as CO2 equivalents by multiplying the seasonal CH4, CO2, and N2O fluxes by 25, 1, and 298, respectively.

Results

Methane mainly covered 79–81 % of the total GWP, followed by CO2 (14–17 %), but the N2O contribution was very small (2–5 %) regardless of the treatment. Seasonal CH4 fluxes significantly increased to 61 and 122 % by vetch and rye additions, respectively, compared to that of the NPK treatment. Similarly, the estimated seasonal CO2 fluxes increased at about 197 and 266 % in the vetch and rye treatments, respectively, compared with the NPK control plots. Based on these results, the total GWP increased to 163 and 221 % with vetch and rye applications, respectively, over the control treatment. Rice productivity was significantly increased with the application of green manure due to nutrient supply; however, vetch was more effective. Total GWP per grain yield was similar with the vetch (low C/N ratio) and NPK treatments, but significantly increased with the rye (high C/N ratio) application, mainly due to its higher CH4 emission characteristic and lower rice productivity increase.

Conclusions

A low C/N ratio cover crop, such as vetch, may be a more desirable green manure to reduce total GWP per grain yield and to improve rice productivity.  相似文献   

10.
Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.  相似文献   

11.
冬季作物种植对双季稻根系酶活性及形态指标的影响   总被引:5,自引:0,他引:5  
基于湖南长沙7a定位试验,以冬闲为对照,研究了冬种马铃薯、紫云英及油菜为前茬作物对早、晚稻根系酶活性、形态指标及产量的影响.结果表明,与冬闲相比,冬种作物后早、晚稻根系丙二醛(MDA)含量增加,但其根系的活性氧清除能力更强(SOD、POD和CAT活性高),能够在一定程度上缓解膜脂过氧化作用带来的伤害;冬种不同作物对早晚稻根系形态的影响表现不一.冬种马铃薯和紫云英处理在早稻生育后期的根系优势明显,并能在一定程度上促进晚稻根系生长,双季稻总产量较对照分别增加6.29%和7.76%,而冬种油菜抑制了晚稻根系生长,导致晚稻产量及双季稻总产分别降低6.31%和1.96%;相关性分析表明,灌浆期较高的根长、根数、根体积和根表面积是冬种作物改善双季稻产量的主要原因.综合来看,冬种马铃薯和紫云英对于促进双季稻根系生长,提高稻谷产量具有重要作用,而冬种油菜则不利于提高双季稻的稻谷生产力.  相似文献   

12.
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.  相似文献   

13.
The restoration potential of Sweetgrass (Anthoxanthum nitens (Weber) Y. Schouten & Veldkamp) was evaluated through a field experiment conducted on Kanatsiohareke, a Mohawk farm, and at the LaFayette Experiment Station near Syracuse, New York. The effects of competition reduction and two cover crops on Sweetgrass reestablishment success were examined. Sweetgrass was planted under four treatments: Sweetgrass alone; with existing, old‐field vegetation; with a cover crop of Hairy vetch (Vicia villosa); and with a cover crop of Annual (Italian) ryegrass (Lolium multiflorum). The experiment consisted of five replicates of the four treatments at both LaFayette and Kanatsiohareke. Sweetgrass biomass, height, reproduction rate, and survivorship were greatest in plots that were weeded to eliminate competition and in plots with Hairy vetch as a cover crop. A cover crop of Annual ryegrass resulted in reduced Sweetgrass growth and reproduction. The results of this field experiment indicate that there is great restoration potential for Sweetgrass because it is easily transplanted and reproduces vigorously. For 2.25‐m2 plots, Hairy vetch is an effective cover crop for Sweetgrass. Planting the Sweetgrass with Hairy vetch generated properties of the grass that are desired by basketmakers, such as abundance and tall blades. This technique also allowed for a relatively non–labor intensive method of cultivation. Reestablishment of Sweetgrass offers the members and visitors of Kanatsiohareke the means to continue to use the plant, strengthen traditional practices associated with Sweetgrass, and benefit economically by selling baskets and medicine made with Sweetgrass.  相似文献   

14.
The growing demand for organic products creates opportunities for farmers. Information on the consequences of management practices can help farmers transition to organic and take advantage of these prospects. We examined the interaction between soil disturbance and initial cover crop on naturally occurring entomopathogenic fungi (EPF) during the 3-year transition to organic production in a feed grain rotation in central Pennsylvania. Our experiment included four systems comprised of a factorial combination of two levels of primary tillage (full vs. reduced) and two types of initial cover crop (timothy/clover vs. rye/vetch). The cropping sequence consisted of an initial cover crop, followed by soybean, and finally, maize. The entire experiment was replicated in time, with the initiation lagged by 1 year. We detected four species of EPF (Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea, and Isaria farinosa) by bioassay of soil samples collected four times during each field season. The latter three species were detected infrequently; therefore, we focused statistical analysis on M. anisopliae. Detection of M. anisopliae varied across sampling date, year in crop sequence, and experimental start, with no consistent trend across the 3-year transition period. M. anisopliae was isolated more frequently in the systems initiated with timothy/clover cover crops and utilizing full tillage; however, we only observed a tillage effect in one temporal replicate. M. anisopliae detection was negatively associated with soil moisture, organic matter, and zinc, sulfur, and copper concentrations in the soil. This study helps to inform farmers about management effects on soil function, specifically conservation biological control.  相似文献   

15.
In a replicated field experiment, ryegrass, vetch and red clover were grown or the soil was kept bare over a 2–month period in summer to compare the effects of these treatments on slug damage to the following crop (Chinese cabbage) and on the efficacy of nematodes (Phasmarhabditis hermaphrodita) applied as biological control agents to the soil at planting time to protect this crop. Slug damage was significantly (c. two times) greater after red clover or vetch than after ryegrass. Damage on plots without cover crop was intermediate and not significantly different from either extreme. Slug damage was reduced by about one‐third by the nematode treatment. The preceding cover crop did not influence nematode efficacy. Numbers of slugs on harvested plants (mainly Deroceras reticulatum and Deroceras panormitanum) were influenced by an interaction between cover crop and nematode treatment. On subplots without nematodes, more slugs were recorded with than without a preceding cover crop. No such differences were found on nematode‐treated subplots. Soil samples were collected at intervals from 0–99 days after nematode treatment to monitor nematode survival and infectivity in bioassays with D. reticulatum. No significant effects of cover crops were detected in bioassays. Moreover, there were no significant effects of nematodes on slug survival. Their effects on slug food consumption were mostly insignificant and any effects were transient and not consistent. However, significantly more slug cadavers contained nematodes when slugs were exposed to nematode‐treated soil. The implications of these results are discussed.  相似文献   

16.
Cover crops have been reported as one of the most effective practices to increase soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change vary depending on soil properties, climate, and management practices, but it remains unclear how these control factors affect SOC benefits from cover crops, as well as which management practices can maximize SOC benefits. To address these questions, we used an advanced process-based agroecosystem model, ecosys, to assess the impacts of winter cover cropping on SOC accumulation under different environmental and management conditions. We aimed to answer the following questions: (1) To what extent do cover crops benefit SOC accumulation, and how do SOC benefits from cover crops vary with different factors (i.e., initial soil properties, cover crop types, climate during the cover crop growth period, and cover crop planting and terminating time)? (2) How can we enhance SOC benefits from cover crops under different cover crop management options? Specifically, we first calibrated and validated the ecosys model at two long-term field experiment sites with SOC measurements in Illinois. We then applied the ecosys model to six cover crop field experiment sites spanning across Illinois to assess the impacts of different factors on SOC accumulation. Our modeling results revealed the following findings: (1) Growing cover crops can bring SOC benefits by 0.33 ± 0.06 MgC ha−1 year−1 in six cover crop field experiment sites across Illinois, and the SOC benefits are species specific to legume and non-legume cover crops. (2) Initial SOC stocks and clay contents had overall small influences on SOC benefits from cover crops. During the cover crop growth period (i.e., winter and spring in the US Midwest), high temperature increased SOC benefits from cover crops, while the impacts from larger precipitation on SOC benefits varied field by field. (3) The SOC benefits from cover crops can be maximized by optimizing cover crop management practices (e.g., selecting cover crop types and controlling cover crop growth period) for the US Midwestern maize–soybean rotation system. Finally, we discussed the economic and policy implications of adopting cover crops in the US Midwest, including that current economic incentives to grow cover crops may not be sufficient to cover costs. This study systematically assessed cover crop impacts for SOC change in the US Midwest context, while also demonstrating that the ecosys model, with rigorous validation using field experiment data, can be an effective tool to guide the adaptive management of cover crops and quantify SOC benefits from cover crops. The study thus provides practical tools and insights for practitioners and policy-makers to design cover crop related government agricultural policies and incentive programs for farmers and agri-food related industries.  相似文献   

17.
冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响   总被引:18,自引:0,他引:18  
研究不同的冬季作物马铃薯、黑麦草、紫云英、油菜在"冬季作物-双季稻"轮作种植制度下短期内对稻田土壤微生物碳、氮和微生物熵的影响,在湖南省土壤肥料研究所的实验网室内设置了小区试验.试验结果表明:几种冬季作物均提高了稻田土壤微生物碳、氮含量,黑麦草明显提高了土壤微生物量碳和微生物熵,紫云英明显提高了土壤微生物量氮.冬季作物对土壤微生物量碳和土壤微生物量氮的季节性影响变化趋势基本一致,紫云英、马铃薯处理的土壤微生物量C、N含量均在水稻生育期间8月中旬达到最大值.  相似文献   

18.
东北三江平原覆盖作物种植效果   总被引:1,自引:0,他引:1  
以土壤紧实度、冬前生物量、根系性状、植株氮累积量等为指标对供试12种覆盖作物(豆科:紫花苜蓿、光叶苕子、毛叶苕子、红三叶、白三叶、箭筈豌豆;非豆科:苏丹草、青萝卜、Nitro radish、甘蓝型油菜、羽衣甘蓝、菊苣)在东北三江平原地区的种植效果及应用潜力进行综合评价。结果表明: 12种覆盖作物在试验播期均能正常生长,不同覆盖作物与对照相比均有利于降低土壤紧实度,其中青萝卜、Nitro radish和苏丹草土壤紧实度下降最显著,分别较对照下降了47.1%、43.4%和33.4%;覆盖作物群体冬前鲜生物量为3.38~13.98 kg·m-2,干生物量为0.78~2.43 kg·m-2,非豆科覆盖作物的生物量显著高于豆科覆盖作物;覆盖作物的群体根系体积以萝卜、油菜、菊苣较大,尤其Nitro radish的根体积高达4018.5 cm3·m-2,苏丹草的根系横向延展范围最宽;豆科覆盖作物的灰分含量显著低于非豆科覆盖作物,能提供更多易分解的有机物质;覆盖作物总氮积累量为18.72~53.09 g·m-2,其中,羽衣甘蓝和菊苣的氮积累量最高,且生物量相对较大,有利于氮的积累和固定。在三江平原地区根据主栽作物的类型与冠层结构,选择豆科的三叶草、苕子、紫花苜蓿和非豆科的萝卜、羽衣甘蓝、苏丹草作为覆盖作物进行行间或行内混播的种植方式,可以在调控土壤结构的同时促进养分循环,有利于三江平原黑土地力的提升。  相似文献   

19.
Summary Catalase activity of a loamy sand under a 3-year crop rotation in the southeastern U.S.A. was monitored. Corn (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean [Glycine max (L.) Merr.] were the summer crops in the rotation. Winter wheat (Triticum aestivum L.) was planted after corn, and soybean was followed by a winter fallow period. Cotton was followed by a mixture of common vetch (Vicia sativa L.) and crimson clover (Trifolium incarnatum Gibelli & Belli) which was eventually plow-incorporated as a green manure. Highest mean catalase activities were recorded in soil under the wheat, soybean, and winter legume crops; lowest activities were found in soil bearing corn and cotton, and during the winter fallow period. The fertilization regime influenced soil catalase activity independently of the crop. Soil deficient in any of the major elements showed low enzyme activity. Highest activity was found in soil fertilized with P and K, and with N supplied by a winter legume crop. Addition of supplementary mineral nitrogen to this regime reduced catalase activity. Elimination of the winter legume crop from an otherwise complete fertilization regime resulted in a drastic reduction in enzyme activity. In soil receiving a complete fertilization regime there was a close correlation between soil catalase and xylanase activities. A similar correlation between these two enzymes was not found in soil receiving incomplete fertilization.  相似文献   

20.
为探讨外源有机物料在提升土壤有机碳和改良土壤肥力中的作用机理,依托中国农业科学院衡阳红壤实验站的长期定位试验,研究了冬种绿肥和秸秆还田模式(CK,冬闲;MV,冬种紫云英;S,早稻秸秆全量还田;DS,早、晚稻秸秆全量还田;SMV,冬种紫云英+早稻秸秆全量还田;DSMV,冬种紫云英+早、晚稻秸秆全量还田)对土壤团聚体和有机质官能团的影响。结果表明: 双季稻土壤超大团聚体(>2 mm)和大团聚体(0.25~2 mm)含量最多,为72.1%~81.8%,且两者中有机碳含量高达12.1~20.7 g·kg-1,占总有机碳的22.7%~59.0%。水稻土中有机物官能团以多糖为主,其次为脂肪碳和芳香碳,各官能团的丰度受紫云英种植和秸秆还田的影响。与其他处理相比,DSMV显著增加了水稻土中超大团聚体(>2 mm)和大团聚体(0.25~2 mm)的含量,并促进了两种团聚体内芳香碳等惰性碳的积累。因此,DSMV更有利于土壤团聚体和有机质稳定性的提升,在实际农业生产中具有较大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号