首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic and molecular data have implicated the Drosophila gene female-lethal (2)d (fl (2)d) in alternative splicing regulation of genes involved in sexual determination. Sex-specific splicing is under the control of the female-specific regulatory protein sex-lethal (SXL). Co-immunoprecipitation and mass spectrometry results indicate that SXL and FL (2)D form a complex and that the protein VIRILIZER and a Ran-binding protein implicated in protein nuclear import are also present in complexes containing FL (2)D. A human homolog of FL (2)D was identified and cloned. Interestingly, this gene encodes a protein (WTAP) that was previously found to interact with the Wilms' tumor suppressor-1 (WT1), an isoform of which binds to and co-localizes with splicing factors. Alternative splicing of transformer pre-mRNA, a target of SXL regulation, was affected by immunodepletion of hFL (2)D/WTAP from HeLa nuclear extracts, thus arguing for a biochemical function of FL (2)D/WTAP proteins in splicing regulation.  相似文献   

2.
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.Edited by D.A. Weisblat  相似文献   

3.
The Drosophila crooked neck (crn) gene encodes an unusual TPR-containing protein whose function is essential for embryonic development. Homology with other TPR-proteins involved in cell cycle control, initially led to the proposal that Crn might play a critical role in regulation of embryonic cell divisions. Here, we show that Crn does not have a cell cycle function in the embryo. By using specific antibodies we also show that the Crn protein is a nuclear protein which localizes in "speckles" which could correspond to preferential localization of several other splicing factors. Fractionation of nuclear extracts on sucrose gradients revealed Crn in a 900 kDa multiproteic complex together with snRNPs, suggesting that Crn participates in the assembly of the splicing machinery in vivo.  相似文献   

4.
Precise temporal and spatial regulation of gene expression during Drosophila oogenesis is essential for patterning the anterior-posterior and dorsal-ventral body axes. Establishment of the anterior-posterior axis requires posterior localization and translational control of both oskar and nanos mRNAs. Establishment of the dorsal-ventral axis depends on the precise restriction of gurken mRNA and protein to the dorsal-anterior corner of the oocyte. We have previously shown that Glorund, the Drosophila hnRNP F/H homolog, contributes to anterior-posterior axis patterning by regulating translation of nanos mRNA, through a direct interaction with its 3′ untranslated region. To investigate the pleiotropy of the glorund mutant phenotype, which includes dorsal-ventral and nuclear morphology defects, we searched for proteins that interact with Glorund. Here we show that Glorund is part of a complex containing the hnRNP protein Hrp48 and the splicing factor Half-pint and plays a role both in mRNA localization and nurse cell chromosome organization, probably by regulating alternative splicing of ovarian tumor. We propose that Glorund is a component of multiple protein complexes and functions both as a translational repressor and splicing regulator for anterior-posterior and dorsal-ventral patterning.  相似文献   

5.
6.
RNA interference (RNAi) is becoming a popular method for analyzing gene function in a variety of biological processes. We have used RNAi in cultured Drosophila cells to identify trans-acting factors that regulate the alternative splicing of endogenously transcribed pre-mRNAs. We have generated a dsRNA library comprising 70% of the Drosophila genes encoding RNA binding proteins and assessed the function of each protein in the regulation of alternative splicing. This approach not only identifies trans-acting factors regulating specific alternative splicing events, but also can provide insight into the alternative splicing regulatory networks of Drosophila. Here, we describe this RNAi approach to identify alternative splicing regulatory proteins in detail.  相似文献   

7.
8.
Arabidopsis genes MYR1 and MYR2 are regulators of flowering time under low light intensity. These Myb-related genes are expressed as alternative splice variants affected in their coiled-coil and DNA-binding domains. We tested whether alternative splicing could affect dimerization and localization of MYR1 and MYR2, thereby potentially affecting their activity. Using MYR1 as a model for variants within the coiled-coil region, we detected 2 types of homodimers. For MYR2, alternative splicing in the DNA-binding Myb-like domain abolished the ability of MYR2 to dimerize. Alternative splicing in the coiled-coil domain did not affect nuclear localization, as determined by transient expression in tobacco, while alternative splicing in the DNA-binding domain of MYR2 yielded a distinct intranuclear localization pattern that may reflect changes in phosphorylation-dependent protein folding. Thus alternative splicing of these genes may result in changes in dimerization or protein folding resulting in changes in activity and abundance of MYR1 or MYR2 protein.  相似文献   

9.
10.
11.
12.
13.
14.
The Dmnk (Drosophila maternal nuclear kinase) gene, encoding a nuclear protein serine/threonine kinase, is expressed predominantly in the germline cells during embryogenesis, suggesting its possible role in the establishment of germ cells. We report here that Dmnk interacts physically with Drosophila RNA binding protein Orb, which plays crucial roles in the establishment of Drosophila oocyte by regulating the distribution and translation of several maternal mRNAs. Considering similar spatiotemporal expression pattern of Dmnk and orb during oogenesis and early embryogenesis, it is suggested that Dmnk plays a role in establishment of germ cells by interacting with Orb. Although there are two forms of Dmnk proteins, Dmnk-L (long) and Dmnk-S (short) via the developmentally regulated alternative splicing, Orb can associate with both forms of Dmnk proteins when expressed in culture cells. However, immunohistochemical analysis revealed that Dmnk-S, but not Dmnk-L, can affect the subcellular localization of Orb in a kinase activity-dependent manner, suggesting differential functions of Dmnk-S and Dmnk-L in the regulation of Orb.  相似文献   

15.
16.
17.
可变剪接使一个基因能产生多种m RNA成熟体,极大地增加蛋白多样性.采用中华猕猴桃基因组数据做参考数据,利用中华猕猴桃叶片和果实3个不同发育时期(未成熟、半成熟和成熟期)的转录组数据,从中华猕猴桃基因组(39040个基因)中共鉴定出11651个基因(占总基因数的29%)对应的32180个可变剪接事件.在可变剪接不同类型中,内含子保留类型的发生频率最高,占50%以上;3′可变位点类型频率约为5′端可变类型的2倍.GO富集分析结果表明,可变剪接的基因主要富集于酶调控及核苷酸结合相关功能的GO类别中,而组织特有可变剪接基因功能富集热点与组织的重要功能关联,叶片多为肌动蛋白及微管相关;未成熟果实与双组分信号系统相关;半成熟果实多与磷脂合成过程相关;成熟果实多与信号传递过程相关.另外,55.6%的维生素合成相关基因发生可变剪接事件,显著高于基因组水平的29.6%,暗示着可变剪接参与维生素合成相关基因代谢过程中的重要作用.通过对中华猕猴桃全基因组可变剪接的分析,为解析中华猕猴桃基因组及进一步开展相关分子育种工作提供依据.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号