首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ramonda serbica plants dehydrated for 14 days reached a relative water content of 4.2% and entered into anabiosis prior to being rehydrated for 48 h. Total ascorbate (AsA + DHA) and glutathione (GSH + GSSG) contents increased during dehydration and approached control values by the end of rehydration. Reduced ascorbate (AsA) and glutathione (GSH) were consumed during the first 13 days of dehydration when guaiacol-, syringaldazine- and phenolic peroxidases (EC 1.11.1.7) increased. At the end of dehydration AsA and GSH accumulated whereas peroxidases decreased to half the value of controls. In this period, plants of R. serbica face a phase of reduced metabolism and, thus, of reduced consumption of antioxidants. During rehydration, both AsA and GSH were utilized reaching, after 48 h, about 20 and 40% of their total pools, respectively; moreover peroxidases increased showing the recovery of metabolic activities. In the dehydration process total phenolic acids decreased, but accumulated after 5 h of rehydration and returned to control values at the end of rehydration. In R. serbica leaves, the most representative phenolic acids were protocatechuic, p -hydroxybenzoic and chlorogenic acids. Most concentrated phenolic acids, such as protocatechuic and chlorogenic acids, accumulated during the first period of rehydration when AsA decreased. These results suggest a role of ascorbate in inhibiting oxidation when phenolic peroxidases remain at low levels. As a consequence of this inhibition, ascorbate was oxidized and when most of it was consumed, oxidation of phenols resumed.  相似文献   

2.
Changes in photochemical efficiency, non-radiative energy dissipation (NRD), de-epoxidation state of xanthophyll cycle components (DPS) and contents of the antioxidants ascorbic acid and glutathione were studied in leaves of the poikilohydric Ramonda serbica Panc. (Gesneriaceae) during cycles of dehydration and subsequent rehydration. In drying leaves, the intrinsic efficiency of PS II photochemistry and the photon yield of PS II electron transport showed strong progressive decreases. Simultaneously, the fraction of excitation energy dissipated as heat in the PS II antenna increased markedly. The energy-dependent component of non-photochemical quenching (NPQ) showed an increase in dehydrating leaves down to relative water contents (RWC) values near 30%. Further decreases in RWC below these values caused a decrease in NPQ. Accordingly, DPS showed a similar behaviour, with a sharp increase and a subsequent decrease at very low RWC, although the maximum DPS was reached at slightly lower RWC than that for the maximum NPQ. The pools of reduced ascorbate and glutathione increased strongly when the RWC values fell below 40% and remained high in fully dehydrated leaves. When plants were re-watered photosynthetic efficiency, NRD, DPS and antioxidant contents recovered their initial control values. However, during rehydration, the zeaxanthin content showed a transient increase, as did NPQ, indicating an increasing demand for non-radiative dissipation. On the other hand, the contents of reduced ascorbate and reduced glutathione decreased but were still relatively high in the initial phase of rehydration, when the rate of photosynthetic electron transport, proton pumping and NRD were still relatively low. These results indicate that several photoprotective mechanisms are operating in R. serbica. Protection from photo-oxidation and photoinhibition appears to be achieved by co-ordinated contributions by ascorbate, glutathione and zeaxanthin-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring desiccation-tolerance.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
The functioning of the photosynthetic apparatus of cotton (Gossypium hirsutum) grown during the onset of water limitation was studied by gas-exchange and chlorophyll fluorescence to better understand the adaptation mechanisms of the photosynthetic apparatus to drought conditions. For this, cotton was grown in the field in Central Asia under well-irrigated and moderately drought-stressed conditions. The light and CO(2) responses of photosynthesis (A(G)), stomatal conductance (g(s)) and various chlorophyll fluorescence parameters were determined simultaneously. Furthermore, chlorophyll fluorescence images were taken from leaves to study the spatial pattern of photosystem II (PSII) efficiency and non-photochemical quenching parameters. Under low and moderate light intensity, the onset of drought stress caused an increase in the operating quantum efficiency of PSII photochemistry (varphi(PSII)) which indicated increased photorespiration since photosynthesis was hardly affected by water limitation. The increase in varphi(PSII) was caused by an increase of the efficiency of open PSII reaction centers (F(v)'/F(m)') and by a decrease of the basal non-photochemical quenching (varphi(NO)). Using a chlorophyll fluorescence imaging system a low spatial heterogeneity of varphi(PSII) was revealed under both irrigation treatments. The increased rate of photorespiration in plants during the onset of drought stress can be seen as an acclimation process to avoid an over-excitation of PSII under more severe drought conditions.  相似文献   

4.
Lu  C; Zhang  J 《Journal of experimental botany》1998,49(327):1671-1679
Analyses of CO2 exchange and chlorophyll fluorescence were carried out to assess photosynthetic performance during senescence of maize leaves. Senescent leaves displayed a significant decrease in CO2 assimilatory capacity accompanied by a decrease in stomatal conductance and an increase in intercellular CO2 concentration. The analyses of fluorescence quenching under steady-state photosynthesis showed that senescence resulted in an increase in non-photochemical quenching and a decrease in photo-chemical quenching. It also resulted in a decrease in the efficiency of excitation energy capture by open PSII reaction centres and the quantum yield of PSII electron transport, but had very little effect on the maximal efficiency of PSII photochemistry. The results determined from the fast fluorescence induction kinetics indicated an increase in the proportion of QB-non-reducing PSII reaction centres and a decrease in the rate of QA reduction in senescent leaves. Theoretical analyses of fluorescence parameters under steady-state photosynthesis suggest that the increase in the non-photochemical quenching was due to an increase in the rate constant to thermal dissipation of excitation energy by PSII and that the decrease in the quantum yield of PSII electron transport was associated with a decrease in the rate constant of PSII photochemistry. Based on these results, it is suggested that the decrease in the quantum yield of PSII electron transport in senescent leaves was down-regulated by an increase in the proportion of QB-non-reducing PSII reaction centres and in the non-photochemical quenching. The photosynthetic electron transport would thus match the decreased demand for ATP and NADPH in carbon assimilation which was inhibited significantly in senescent leaves.Key words: Chlorophyll fluorescence, gas exchange, maize (Zea mays L.), photochemical and non-photochemical quenching, photosystem II photochemistry.   相似文献   

5.
The low-wave phenomenon, i.e., the transient drop of yield of modulated chlorophyll fluorescence shortly after application of a pulse of saturating light, was investigated in intact leaves of tobacco and Camellia by measuring fluorescence, CO(2) assimilation and absorption at 830 nm simultaneously. Limitations on linear electron flow, due to low electron acceptor levels that were induced by low CO(2), induced the low waves of chlorophyll fluorescence. Low-wave amplitudes obtained under different CO(2) concentrations and photon-flux densities yielded single-peak curves when plotted as functions of fluorescence parameters such as PhiPS II (quantum yield of Photosystem II) and qN (coefficient of non-photochemical quenching), suggesting that low-wave formation depends on the redox state of the electron transport chain. Low waves paralleled redox changes of P700, the reaction center of Photosystem I (PS I), and an additional electron flow through PS I was detected during the application of saturating pulses that induced low-waves. It is suggested that low waves of chlorophyll fluorescence are induced by increased non-photochemical quenching, as a result of the formation of a trans-thylakoid proton gradient due to cyclic electron flow around PS I.  相似文献   

6.
在新疆气候生态条件下, 采用膜下滴灌植棉技术, 设置不同滴灌水分处理, 研究了不同滴灌量条件下棉花(Gossypium hirsutum)苞叶和叶片碳同化、光呼吸作用、光系统II (PSII)热耗散作用及其光破坏防御机制的差异, 以揭示滴灌节水条件下棉花苞叶缓解光抑制的机理及与棉花抗旱特性的关系。结果表明: 棉花开花后苞叶及叶片在高温强光下实际光化学效率(ΦPSII)显著降低, 发生明显的光抑制现象, 但苞叶的光抑制程度较叶片轻; 与正常滴灌量处理相比, 节水滴灌条件下棉花水分亏缺, 叶片净光合速率(Pn)、ΦPSII、光呼吸(Pr)、光化学猝灭系数(qP)降低, 非光化学猝灭系数(NPQ)升高, 叶片光抑制程度加重, 而苞叶Pn、ΦPSII、Pr、qP、NPQ变化不大, 与正常滴灌量处理相比, 光抑制程度无显著差异。苞叶光呼吸速率与光合速率的比值(Pr/Pn)显著高于叶片; 滴灌节水条件下棉花适度水分亏缺对苞叶光呼吸及Pr/Pn无显著影响。高温强光下, 棉花节水滴灌对叶片PSII量子产量的转化与分配影响显著, 但对苞叶的影响不显著; 苞叶非调节性能量耗散的量子产量(Y(NPQ))高于叶片, 因此能有效地将PSII的过剩光能以热的形式耗散。综上所述, 与叶片相比, 苞叶对轻度水分亏缺不敏感, 是棉花适应干旱逆境较强的器官, 苞叶光呼吸和热耗散作用对光破坏防御具有重要意义。  相似文献   

7.
It has been suggested previously that non-photochemical quenching of chlorophyll fluorescence is associated with a decrease in the rate of photosystem 2 (PS 2) photochemistry. In this study analyses of fluorescence yield changes, induced by flashes in leaves exhibiting different amounts of non-photochemical quenching of fluorescence, are made to determine the effect of non-photochemical excitation energy quenching processes on the rate of PS 2 photochemistry. It is demonstrated that both the high-energy state and the more slowly relaxing components of non-photochemical quenching reduce the rate of PS 2 photochemistry. Flash dosage response curves for fluorescence yield show that non-photochemical quenching processes effectively decrease the relative effective absorption cross-section for PS 2 photochemistry. It is suggested that non-photochemical quenching processes exert an effect on the rate of PS 2 photochemistry by increasing the dissipation of excitation energy by non-radiative processes in the pigment matrices of PS 2, which consequently results in a decrease in the efficiency of delivery of excitation energy for PS 2 photochemistry.  相似文献   

8.
The mechanism of rapidly-relaxing non-photochemical quenching in two plant species,Chenopodium album L. andDigitalis purpurea L., that differ considerably in their capacity for such quenching has been investigated (Johnson G.N. et al. 1993, Plant Cell Environ.16, 673–679). Illumination of leaves of both species in the presence of 2% O2 balance N2 led to the formation of zeaxanthin. When thylakoids were isolated from leaves of each species that had been so treated it was found that inD. purpurea non-photochemical quenching was “activated” relative to the control; a higher level of quenching was found for a given trans-thylakoid pH gradient. No such activation of non-photochemical quenching was observed inC. album. Similar conclusions were drawn when comparing quenching in intact leaves. It is concluded that light activation of quenching is a process that cannot readily be induced inC. album. Measurement of the sensitivity of non-photochemical quenching in leaves ofC. album andD. purpurea to dithiothreitol (DTT; a reagent that inhibits formation of zeaxanthin) showed differences between the two species. In both cases, feeding leaves with DTT inhibited the light-induced formation of zeaxanthin. InC. album this was accompanied by complete inhibition of reversible non-photochemical quenching, whereas inD. purpurea this inhibition was only partial. Data are discussed in relation to studies on the mechanism of quenching and the role of zeaxanthin in this process.  相似文献   

9.
The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.  相似文献   

10.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

11.
The effect of drought on the chickpea variety ILC 3279 was investigated at the vegetative stage. After 20 days from sowing, the plants subjected to drought stress for 3, 5 and 7 days imposed by withholding water were permitted to recover by rewatering for 2 days after 3, 5 and 7 days of drought. Shoot elongation, leaf production, fresh and dry biomass reduced while MDA and proline accumulation increased with extended duration of stress. The plants stressed for 3 days exhibited a rapid drop in their relative and absolute water contents. The quantum efficiency of PSII open centres in the dark-adapted and light-saturated state, excitation energy trapping of PSII and electron transport rate decreased significantly from the 5th day to the end of the drought treatments. Plants drought-stressed for 7 days brought about a marked increase in non-photochemical energy dissipation and a marked decline in photochemical quenching. After rewatering all chlorophyll a fluorescence characteristics except for F(M) completely recovered and reached the control values. Under 5 and 7 days of drought, the anthocyanin content increased gradually while the total chlorophyll content of leaves declined compared to the controls. The total carotenoid content remained unchanged during the experiments. The antioxidant enzyme response to drought treatments was quite variable. The total SOD activity upregulated with increasing duration of stress. On the other hand, the total APX activity was significantly higher only on the 7th day while the total POD activity increased from the 5th day. Differences in the total GR activity of treated groups were not statistically significant compared to their controls throughout the treatments. The present results indicate that the chickpea variety ILC 3279 withstands severe drought with its upregulated protective mechanisms at the vegetative stage.  相似文献   

12.
二氧化碳加富对大豆叶片光系统II功能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
 本文研究了长期CO2加富对大豆叶片光系统Ⅱ(PSⅡ)功能的影响。结果表明,CO2加富能促进大豆叶片PSⅡ潜在活性和原初光能转化效率,以及电子传递量子产量的提高;增加荧光光化学淬灭组分,降低荧光非光化学淬火组分。CO2加富对大豆叶片PSⅡ功能的改善,可能是CO2加富条件下,大豆叶片光合速率的提高和产量增加的重要原因之—。  相似文献   

13.
The parameters of fluorescence induction kinetics and the maximal light-saturated net CO2 assimilation rate ( P sat ) of the flag leaves of four cultivars of winter wheat (Triticum aestivum L.) were compared at three different developing stages for the first time. From the blooming stage to the milky stage, the quantum efficiency of PSⅡ photochemistry ( Fv/Fm ) declined slightly only at the milk stage. The photochemical quenching co-efficient ( qP ), actual quantum yield of photosystem Ⅱ(PSⅡ)electron transport ( Φ PSⅡ) and P sat decreased substantially (>15%), while the non-photochemical quenching co-efficient ( qN ) increased significantly (>100%). There existed a linear correlation between the Φ PSⅡ and the P sat ( r =0.918). The results indicate that with the senescence of the flag leaves of winter wheat the photosynthetic efficiency including that of the energy transport and the CO2 assimilation significantly decreased.  相似文献   

14.
Spatial-temporal changes were examined by imaging chlorophyll (Chl) a fluorescence in four leaf areas, two central and two external of rose plants (Rosa x hybrida) cv. Grand Gala for 9 days, under progressive water stress. New fluorescence parameters based on the lake model have recently been used to determine Q(A) redox state and excitation energy fluxes in order to gain a better understanding of the mechanisms that occur under drought stress. Chlorophyll fluorescence images showed a spatial variation in the leaves. The lower values for F(o), F(M), phi(2), q(P) and q(L) were found in the internal leaf area while higher values of non-photochemical quenching calculated from Stern-Volmer quenching (NPQ) and phi(NPQ). phi(Po) were more homogeneous throughout leaf. Temporal changes were also observed during the experiment, a 10% decrease in relative water content (RWC) (between day 1 and 2), led to a decrease in photochemical quenching and an increase in non-photochemical processes. Chlorophyll fluorescence parameters were more or less constant till day 8. At the end of the experiment (day 9), energy dissipation by downregulation, electron transport and Q(A) redox state, decreased and phi(NO) increased to compensate the change. Chlorophyll fluorescence parameters based on the lake model q(L), phi(NPQ) and phi(NO) have been found more appropriate for estimating the fraction of open centres, the quantum yield of regulated energy dissipation in photosystem II (PSII) and the quantum yield of non-regulated energy dissipation in PSII, respectively. The F(s)/F(o) ratio is strongly correlated with NPQ and phi(NPQ) up to a RWC of 20%. This coincides with a greater decrease in photochemical quenching and non-photochemical quenching and an increase in phi(NO).  相似文献   

15.
Photoprotection of the photosynthetic apparatus has two essential elements: first, the thermal dissipation of excess excitation energy in the photosystem II antennae (i.e. non-photochemical quenching), and second, the ability of photosystem II to transfer electrons to acceptors within the chloroplast (i.e. photochemical quenching). Recent studies indicate that the proportion of absorbed photons that are thermally dissipated through the non-photochemical pathway often reaches a maximum well before saturating irradiances are reached. Hence, photochemical quenching is crucial for photoprotection at saturating light intensities. When plants are exposed to environmental stresses and the availability of CO(2) within the leaf is restricted, the reduction of oxygen by both the photorespiratory and the Mehler ascorbate peroxidase pathways appears to play a critical photoprotective role, substituting for CO(2) in sustaining electron flow. Induction of high activity of the Mehler ascorbate peroxidase pathway may be associated with acclimation to environmental stress.  相似文献   

16.
The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm (A 505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between A 505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10–40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1–2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2–2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1–2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)–1 at 30° C to 61 mmol · (mol Chl)–1 at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol treatment. The rate of development of that portion of non-photochemical quenching which was inhibited by dithiothreitol decreased with decreasing temperature and was linearly related to the rate of zeaxanthin formation over a wide temperature range. In contrast, the rate of development of the dithiothreitol-resistant portion of non-photochemical quenching was remarkably little affected by temperature. Evidently, the kinetics of the development of non-photochemical quenching upon exposure of leaves to excessive light is therefore in large part determined by the rate of zeaxanthin formation. For reasons that remain to be determined the relaxation of dithiothreitolsensitive quenching that is normally observed upon darkening of illuminated leaves was strongly inhibited at low temperatures.Abbreviations and Symbols Chl chlorophyll - DTT dithiothreitol - EPS epoxidation state - NPQ non-photochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - F, Fm fluorescence emission at the actual, full closure of the PSII centers C.I.W.-D.P.B. Publication No. 1092We thank Connie Shih for skillful assistance in growing the plants, for conducting the HPLC analyses, and for preparing the figures. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W.B. is gratefully acknowledged. This work was supported by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B.  相似文献   

17.
"NYB" is a chlorophyll-less barley mutant, which grows relatively slow and unhealthily. The effects of water stress on photosystem II (PSII) of NYB and its wild type (WT) were investigated. Unexpected results indicated that the mutant was more resistant to water stress, because: PSII core proteins D1, D2 and LHCII declined more in WT than in NYB under water stress, and the corresponding psbA, psbD and cab mRNAs also decreased more dramatically in WT; CO2 assimilation, stomatal conductance, maximum efficiency of PSII photochemistry (Fv/Fm), efficiency of excitation energy capture by open PSII reaction centres (Fv'/Fm'), quantum yield of PSII electron transport (Phi(PSII)) and DCIP photoreduction in NYB were less sensitive to water stress than in WT, although the non-photochemical quenching coefficient (q(N)) and the photochemical quenching coefficient (q(P)) were almost the same in NYB and WT. Effective chlorophyll utilization and improved PSII protein formation in the mutant may be the reason for the enhanced stress resistance. Other possible mechanisms are also discussed.  相似文献   

18.
The effect of short-term drought stress on the water content, antioxidant system and photosynthetic characteristics was investigated using cucumber (Cucumis sativus L.) seedlings. The results indicated that polyethylene glycol induced water stress reduced water content in shoots of cucumber seedling after treatment of 36 hours, and caused obvious reductions in net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration of leaves. In addition, water stress significantly reduced the photosynthetic pigment content and inhibited photochemical activity, including actual photochemical efficiency, maximal quantum yield of photosystem II photochemistry and coefficient for photochemical quenching. Meanwhile non-photochemical quenching increased. As responses to drought stress, significant increases in electrolyte leakage, malondialdehyde, superoxide anion and hydrogen peroxide levels were detected in leaves. The superoxide dismutases, catalase, glutathione reductase and dehydroascorbate reductase activities, protein, ascorbate and glutathione content, all decreased and peroxidases activity increased, while ascorbate peroxidase and monodehydroascorbate reductase activities exhibited different trend under different degree of water stress. Therefore, it can be concluded that water stress strongly disrupted the normal metabolism of leaves and restrained water absorption.  相似文献   

19.
To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSll (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (Qp) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, Qp and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.  相似文献   

20.
Ganago  I.B. 《Photosynthetica》1998,34(2):281-291
Chlorophyll (Chl) fluorescence quenching parameters were measured in dark-adapted pea leaves and chloroplasts with the purpose to find the conditions of high and low non-photochemical quenching, that would be stable during a prolonged irradiation. A PAM fluorometer was used for measuring induction curves in the range of actinic radiation of 3-35 W m-2, with an ordinary value of about 15 W m-2. The effects of various mediators, i.e., ascorbate, methyl viologen (MV), dithiothreitol (DTT) and nigericin, on the quenching process were tested. Simultaneously, the absorbance was measured during a 15-20 min period of irradiation and after the actinic radiation was turned off, i.e., in the recovery period. The pH values of chloroplast suspensions were 5.5, 6.5 and 8.0, the largest non-photochemical quenching was observed at pH of 6.5. The irradiation of chloroplasts led to an absorption decrease within the entire photosynthetically active range, attaining saturation when the fluorescence reached Fs level, and to an absorption increase during the recovery period. Absorbance changes at the maximum of red band were 10-20 %. A decrease in Chl concentration (10 %) after irradiation was found only at pH of 5.5, when the recovery time was the longest, i.e., about 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号