首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids of isolated guinea pig liver microsomal membranes were labelled biosynthetically with isomeric doxyl stearic acid and temperature-induced changes of these membranes were studied by electron spin resonance. A noticeable discontinuity was detected at 10--12 degree C with 12- or 16-doxyl stearic acid containing membrane lipids which was attributed to the spin-labelled lipid--microsomal membrane protein interactions since no such discontinuity was detected in liposomes prepared from total lipid extracts of microsomal membranes. When microsomal membranes containing radioactive isomeric spin-labelled lipids were incubated with unlabelled mitochondria, reisolated mitochondrial membranes contained translocated radioactive isomeric spin-labelled lipids. Temperature-induced changes in these membranes showed no discontinuity with either isomeric doxyl stearic acid derivative, establishing a difference in the environment of translocated lipids in the membrane donor compared with that in the membrane acceptor. Microsomal membranes recovered from translocation experiments showed the same behaviour as the original membranes and exhibited the same discontinuity at 10--12 degree C, establishing that the translocation incubation itself did not alter the spin-labelled lipid interaction within these membranes. Studies of the loss of paramagnetism of spin-labelled lipids in microsomal membranes before and in mitochondrial membranes after their translocation showed a significant difference and suggested that both the outer and the inner mitochondrial membranes might have been involved.  相似文献   

2.
Intermembranous translocation of membrane-bound radioactive lipids covalently labelled with 5-, 12, and 16-doxyl stearic acid was studied. Guinea pig liver microsomal membranes containing known amounts of isomeric spin-labelled radioactive phosphatidic acid, phosphatidylcholine, and diglycerides were incubated with unlabelled mitochondria; reisolated mitochondria contained around 28-31% of microsomal labelled lipids above the microsomal contamination. The effect of adding crude or 'pH 5.1' 105 000 X g cytosol supernatant on the amount and composition of translocated labelled lipids was studied. While the translocation of labelled phosphatidylcholine was slightly stimulated by the addition of these cytosol supernatants, no significant increase of the amount of translocated labelled phosphatidic acic and diglycerides was observed by this addition. In view of these results, a probable mechanism for the cytosol protein-independent translocation of lipids between biological membranes is proposed.  相似文献   

3.
A new method for the covalent radioactive and spin labelling of lipids within isolated biological membranes has been described in detail and applied to studies of temperature-induced changes of microsomal and mitochondrial membranes. The method is based on the enzymatic use of radioactive substrates carrying covalently bound doxyl derivatives of stearic acid in the biosynthesis of phospholipids in isolated membranes. Radioactive-and spin-labelled lipids bound to the microsomal and mitochondrial membranes were then used as internal probes in monitoring temperature-induced changes of these membranes. Since the analysis of isolated radioactive-and spin-labelled lipids revealed the exact composition of membrane-bound labelled lipids, specific temperature-induced changes were correlated with specific lipids of examined membranes. Phosphatidylinositol of microsomal membranes and polyglycerophosphatides (phosphatidyl-glycerol and cardiolipin) of mitochondrial and inner mitochondrial membranes were found to be involved in the apparent formation of lipid clusters at around 20-30 degrees C. Cardiolipin was found to be involved in the fluidization of inner mitochondrial membranes. These findings are discussed in view of the present state of knowledge of the organization of lipids in biological membranes.  相似文献   

4.
The effect of chlorpromazine on subcellular biosynthesis, hydrolysis, and transfer of lipids and liponucleotides participating in the biosynthesis of polyglycerophosphatides in guinea pig liver was studied. Chlorpromazine showed an apparent stimulation of accumulation of phosphatidic acid and CDP-diglycerides in microsomal membranes and phosphatidylglycerolphosphate in mitochondrial membranes in a concentration-dependent manner that was influenced by incubation time and the nature of fatty acids in CDP-diglycerides. Transfer of membrane-bound CDP-diglycerides from microsomal to mitochondrial membranes was established by the CDP-diglyceride-dependent biosynthesis of phosphatidylglycerolphosphate and phosphatidylglycerol and appeared to be inhibited by the addition of chlorpromazine by about 20%. Evidence was obtained for the formation of a molecular complex between phosphatidic acid and chlorpromazine; this was thought to be responsible for the protection from phosphatidate phosphohydrolase at the concentrations of chlorpromazine and Mg2+ examined.  相似文献   

5.
Membrane-bound lipids of isolated guinea pig liver microsomal membranes were selectively enzymatically labelled with isomeric (5-, 12-, and 16-)doxyl stearic acid. After reisolation, the membranes were degraded with phospholipases D and C under conditions not requiring detergents or organic solvent activators. The degradation of membrane-bound lipids occurred according to the recognized specificity of phospholipases D and C. Temperature-induced changes of degraded membranes containing radioactive spin-labelled isomeric lipids were followed by the electron spin resonance and spectral changes correlated with the lipid composition of membranes. Discontinuities in plots of experimental spectral parameters versus temperature detected in the case of microsomal membranes before and after degradation with phospholipases D and C were attributed to lipid-protein and lipid-lipid interaction(s). On the basis of these and control experiments, discontinuity at around 10-12 degrees C was attributed to the microsomal membrane phosphatidylcholine intrinsic microsomal membrane protein interaction(s), while discontinuities detected at 19-21 degrees C approximately and at 20-30 degrees C approximately were attributed to the phase separation of Ca or Zn salts of membranous phosphatidic acid and to the similar phenomenon involving membrane-bound diglycerides respectively.  相似文献   

6.
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ~20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.  相似文献   

7.
Guinea pig liver microsomal and mitochondrial membranes were degraded with phospholipase C and D followed by partial biosynthetic reconstitution. Activities of phosphatidylinositol synthetase in microsomal membranes and NADPH-cytochrome c reductase were almost completely lost after phospholipase C and D treatment; almost complete restoration of the original activity was achieved after biosynthesis of phosphatidylcholine in degraded microsomes, but was not reparable after biosynthesis of cytidinediphosphodiglycerides (CDP-diglycerides). The mitochondrial biosynthesis of polyglycerophosphatides was completely retained after degradation of these membranes with phospholipase C, but after similar treatment with phospholipase D, only about one-quarter of the original activity remained, the relative composition of polyglycerophosphatides being significantly different. The activity of NADPH-cytochrome c reductase of microsomes represented about 76% of the original activity after phospholipase C treatment, but only approximately 1% after treatment with phospholipase D. Although this activity could not be restored with CDP-diglyceride synthesis, it was restored to about 75% of the original activity after the biosynthesis of phosphatidylcholine in these fragments. These and additional experimental findings are discussed in terms of the relation between structural organization of lipids and proteins and enzymatic activities of membrane-bound phospholipid-synthesizing enzymes in microsomal and mitochondrial membranes isolated from guinea pig liver.  相似文献   

8.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

9.
Transfer of [3H]CDP-diglycerides from isolated guinea pig liver microsomal and liposomal membranes to guinea pig mitochondrial membranes was studied by incubating microsomal or liposomal membranes carrying [3H]CDP-diglycerides with mitochondrial membranes and determining the CDP-diglyceride-dependent incorporation of sn-3-[14C]glycerolphosphate into mitochondrial [14C]polyglycerophosphatides. A significant difference in the amount of transferred [3H]CDP-diglycerides and the composition of mitochondrial [14C]polyglycerophosphatides was found depending on whether [3H]CDP-diglycerides were transferred from microsomal or liposomal membranes. This amount was around 12% when [3H]CDP-diglycerides were transferred from the microsomal membranes and around 4.6% when they were transferred from the liposomal membranes. Furthermore, about 60% of [14C]phosphatidylglycerol and 35% of [14C]phosphatidylglycerophosphate were found in the microsomes-mitochondria system and about 9% of [14C]phosphatidylglycerol and 79% of [14C]phosphatidylglycerophosphate were found in the liposomes-mitochondria system, establishing an important role for the membrane donor in the transfer of [3H]CDP-diglycerides to mitochondria. Furthermore, if the transfer of [3H]CDP-diglycerides from the microsomal to the mitochondrial membranes was assayed by the determination of [3H]CDP-diglycerides in reisolated mitochondrial membranes without further incorporation into mitochondrial polyglycerophosphates, it amounted to about 38%.  相似文献   

10.
Adipose cytosol treated with spermine showed an aggregation of a cytosolic component which was isolated by centrifugation at 16,000 X g for 20 min. The resultant pellet contained 10% of protein, 40% of lipid and over 75-97% of Mg2+-dependent phosphatidate phosphohydrolase and CTP:phosphocholine cytidylyltransferase activities present in the original cytosol. The specific activities of these enzymes increased 4-fold by the spermine treatment. Characterization of lipids in this component indicated the presence of mainly phospholipids. These studies suggest that the interaction between spermine, the cytosolic component and microsomal membranes may be involved in the translocation of Mg2+-dependent phosphatidate phosphohydrolase.  相似文献   

11.
Reconstitution of phosphatidylserine import into rat liver mitochondria   总被引:5,自引:0,他引:5  
The synthesis translocation and decarboxylation of phosphatidylserine occurs in a cell-free system. The principal membrane components necessary are microsomes (source of phosphatidylserine synthase) and mitochondria (source of phosphatidylserine decarboxylase). The interorganelle translocation of phosphatidylserine can be measured by quantitating the decarboxylation of phosphatidyl[1'-14C]serine initially present in prelabeled microsomal membranes using a 14CO2 trapping assay. The decarboxylation of microsomal phosphatidylserine by intact mitochondria is 1) dependent upon substrate (microsomal membrane) concentration, 2) different from decarboxylation of liposomal phosphatidylserine, 3) resistant to proteases, 4) independent of soluble factors, and 5) unaffected by the addition of partially purified phospholipid exchange proteins but accelerated by purified nonspecific phospholipid exchange protein. The rate-limiting step in the reconstituted translocation-decarboxylation system is not the decarboxylation reaction but the initial translocation event between the microsomal membrane and the outer mitochondrial membrane. These data are interpreted to demonstrate that phosphatidylserine import into the mitochondria can occur via collision complexes formed between the endoplasmic reticulum or vesicles derived therefrom and the outer mitochondrial membrane.  相似文献   

12.
Fluorescent peroxidized lipids are present in lipid extractsof microsomal membranes and cytosol from young and senescingbean (Phaseolus vulgaris) cotyledon tissue. In young tissue,the peroxidized membrane lipids are mainly phospholipids, whereasthose in the cytosol are primarily free fatty acids. With advancingsenescence, microsomal peroxidized lipids increase by 200% relativeto membrane protein and by 50% on a per cotyledon basis, andthe increase is mainly attributable to enhanced levels of peroxidizedfree fatty acids. Cytosolic peroxidized lipids expressed ona per cotyledon basis decline by 55% over the same period. Fractionationof the cytosol revealed that, for both young and senescing tissue,about 50% of the cytosolic fluorescent peroxidized lipids areassociated with non-sedimentable microvesicles, which are formedfrom membranes and enriched in phospholipid catabolites. Moreover,the decline in cytosolic peroxidized lipids with advancing senescencecorrelates with progressive impairment of the formation of thesenon-sedimentable microvesicles. Key words: Phaseolus vulgaris, senescence, lipid peroxidation, fluorescence  相似文献   

13.
Mitochondrial tRNA import is widespread, but mechanistic insights of how tRNAs are translocated across mitochondrial membranes remain scarce. The parasitic protozoan T. brucei lacks mitochondrial tRNA genes. Consequently, it imports all organellar tRNAs from the cytosol. Here we investigated the connection between tRNA and protein translocation across the mitochondrial inner membrane. Trypanosomes have a single inner membrane protein translocase that consists of three heterooligomeric submodules, which all are required for import of matrix proteins. In vivo depletion of individual submodules shows that surprisingly only the integral membrane core module, including the protein import pore, but not the presequence-associated import motor are required for mitochondrial tRNA import. Thus we could uncouple import of matrix proteins from import of tRNAs even though both substrates are imported into the same mitochondrial subcompartment. This is reminiscent to the outer membrane where the main protein translocase but not on-going protein translocation is required for tRNA import. We also show that import of tRNAs across the outer and inner membranes are coupled to each other. Taken together, these data support the ‘alternate import model’, which states that tRNA and protein import while mechanistically independent use the same translocation pores but not at the same time.  相似文献   

14.
The incubation of rat liver homogenates in the presence of oleate induces the translocation of protein kinase C from the cytosol to the endoplasmic reticulum membranes. The half-maximal effect was obtained at 0.3 mM oleate. The redistribution of this enzyme induced by oleate was also obtained with purified protein kinase C and hepatic microsomal membranes. This effect seems to be mediated by long-chain fatty acids since translocation was not obtained with esterified derivatives.  相似文献   

15.
Whilst investigating whether GTP hydrolysis may be required for the import of preproteins into mitochondria we have found that a GTP-binding protein is located at the contact sites between mitochondrial inner and outer membranes. When mitochondrial outer membranes purified from rat liver were UV-irradiated in the presence of [alpha-32P]GTP, a 52 kDa protein was radiolabelled, whereas [alpha-32P]ATP did not label this protein. GTP-binding proteins were also labelled in the cytosolic and microsomal fractions, but the 52 kDa protein was concentrated in mitochondrial membranes and was the only protein specifically labelled by GTP in these membranes. Fractionation of mitochondrial membrane vesicles into outer membranes, inner membranes and contact sites between outer and inner membranes showed that the GTP-binding activity was highly enriched in contact sites, the location at which preprotein import is believed to occur. A protein of almost identical size was also found to be labelled in mitochondria from yeast.  相似文献   

16.
Lipid analysis and ESR studies were carried out on prostasomes isolated from human semen. Cholesterol plus phospholipids amounted to approximately 0.80 mumol per mg protein with a striking quantitative domination of cholesterol over the phospholipids, the molar ratios of cholesterol/sphingomyelin/glycerophospholipids being 4:1:1. Saturated and monounsaturated fatty acids were dominating both in the glycerophospholipids and in sphingomyelin. The order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes were very high, viz. 0.75 for 5-doxylstearic acid and 0.30 for 16-doxylstearic acid at 25 degrees C. Slightly lower values were obtained for the spin-labelled fatty acids when they were incorporated into dispersions of extracted prostasome lipids or into synthetic lipid mixtures of similar composition. The highly ordered lipids in the prostasome membrane thus seemed to be minimally perturbed by proteins in the membrane and ESR spectra showed no signs of immobilized lipids.  相似文献   

17.
Import of proteins into mitochondria: a multi-step process   总被引:17,自引:0,他引:17  
Translocation of precursor proteins from the cytosol into mitochondria is a multi-step process. The generation of translocation intermediates, i.e. the reversible accumulation of precursors at distinct stages of their import pathway into mitochondria ('translocation arrest'), has allowed the experimental characterization of distinct functional steps of protein import. These steps include: ATP-dependent unfolding of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors with a general insertion protein ('GIP') in the outer mitochondrial membrane; membrane-potential-dependent translocation into the inner membrane at contact sites between both membranes; proteolytic processing of precursors; and intramitochondrial sorting of precursors via the matrix space ('conservative sorting'). The functional characteristics unveiled by studying mitochondrial protein import appear to be of general interest for investigations on intracellular protein sorting.  相似文献   

18.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

19.
Isolated guinea pig liver microsomal membranes catalyzed the incorporation of naturally occurring cis-parinaric acid into sn-3-[U-14C]glycerophosphate. This resulted in the formation of sn-3-[14C](parinaroyl)phosphatidic acid, which was isolated by Chelex-100 and DEAE-cellulose column chromatography and further purified by Sephadex-G 25. The sn-3-[14C](parinaroyl)phosphatidic acid thus obtained exhibited absorption and fluorescence spectra substantially different from the cis-parinaric acid. Distribution of the incorporated cis-parinaric acid between the hydroxyl groups of biosynthesized sn-3-[14C]phosphatidic acid was determined by degradation with Crotalus adamanteus venom. This established that the major portion of the incorporated cis-parinaric acid esterified the secondary hydroxyl group in the sn-3-[14C]phosphatidic acid, while the primary hydroxyl group was esterified to a significantly lesser degree. The similarity between the biochemical incorporation of isomeric doxyl stearic acids into lipids of biological membranes and that of cis-parinaric acid into sn-3-phosphatidic acid described in this communication are discussed in relation to the possible use of these probes in studies of intact biological membranes.  相似文献   

20.
The biosynthesis of radioactively labelled phosphatidylglycerol via phosphatidylglycerophosphate in outer and inner mitochondrial membranes isolated from guinea pig liver was found to depend absolutely on CDP-diglycerides, which could not be biosynthesized in these membranes. The requirement for CDP-diglycerides in the biosynthesis of labelled phosphatidylglycerol could be fulfilled by the transfer of biosynthesized [3H]CDP-diglycerides from the microsomal membranes to the outer and inner mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号