首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein-free parallel triple-stranded DNA complex formation   总被引:2,自引:2,他引:0       下载免费PDF全文
A 14 nt DNA sequence 5′-AGAATGTGGCAAAG-3′ from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar–phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5′-end of the probe strand as donor and BODIPY-Texas Red on the 3′-amino group of either strand of the target duplex as acceptor. There was full protection from OsO4-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe–intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed.  相似文献   

2.
A total of 16 oligodeoxyribonucleotides of general sequence 5′-TCTTCTZTCTTTCT-3′, where Z denotes an N-acyl-N-(2-hydroxyethyl)glycine residue, were prepared via solid phase synthesis. The ability of these oligonucleotides to form triplexes with the duplex 5′-AGAAGATAGAAAGA-HEG-TCTTTCTATCTTCT-3′, where HEG is a hexaethylene glycol linker, was tested. In these triplexes, an ‘interrupting’ T:A base pair faces the Z residue in the third strand. Among the acyl moieties of Z tested, an anthraquinone carboxylic acid residue linked via a glycinyl group gave the most stable triplex, whose UV melting point was 8.4°C higher than that of the triplex with 5′-TCTTCTGTCTTTCT-3′ as the third strand. The results from exploratory nuclease selection experiments suggest that a combinatorial search for strands capable of recognizing mixed sequences by triple helix formation is feasible.  相似文献   

3.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

4.
A directional nucleation-zipping mechanism for triple helix formation   总被引:2,自引:1,他引:1  
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression.  相似文献   

5.
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5′- or 3′-strand. We obtained direct evidence that the 3′-strand forms a stable duplex with the complementary central strand, while the 5′-strand participates in non-Watson–Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T·A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T·A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of −100 kJ·mol−1 demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ·mol−1, is high compared with the overall triplex formation enthalpy. The observed energy advantage of a ‘correct’ base in the third strand opposite the Watson–Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.  相似文献   

6.
Infrared and UV spectroscopies have been used to study the assembly of a hairpin nucleotide sequence (nucleotides 3–30) of the 5′ non-coding region of the hepatitis C virus RNA (5′-GGCGGGGAUUAUCCCCGCUGUGAGGCGG-3′) with a RNA 20mer ligand (5′-CCGCCUCACAAAGGUGGGGU-3′) in the presence of magnesium ion and spermidine. The resulting complex involves two helical structural domains: the first one is an intermolecular duplex stem at the bottom of the target hairpin and the second one is a parallel triplex generated by the intramolecular hairpin duplex and the ligand. Infrared spectroscopy shows that N-type sugars are exclusively present in the complex. This is the first case of formation of a RNA parallel triplex with purine motif and shows that this type of targeting RNA strands to viral RNA duplexes can be used as an alternative to antisense oligonucleotides or ribozymes.  相似文献   

7.
An effect of 5'-phosphorylation on the stability of triple helical DNA containing pyrimidine:purine:pyrimidine strands has been demonstrated by both gel electrophoresis and UV melting. A 5'-phosphate on the purine-rich middle strand of a triple helix lowers the stability of triple helix formation by approximately 1 kcal/mol at 25 degrees C. The middle strand is involved in both Watson-Crick and Hoogsteen base pairing. In contrast, a 5'-phosphate on the pyrimidine-rich strands, which are involved in either Watson-Crick or Hoogsteen base pairing, has a smaller effect on the stability of triple helix. The order of stability is: no phosphate on either strand > phosphate on both pyrimidine strands > phosphate on purine strand > phosphate on all three strands. Differential stability of triple helix species is postulated to stem from an increase in rigidity due to steric hindrance from the 5'-phosphate. This result indicates that labelling with 32P affect equilibrium in triplex formation.  相似文献   

8.
Solution structure of a dsDNA:LNA triplex   总被引:1,自引:1,他引:0       下载免费PDF全文
We have determined the NMR structure of an intramolecular dsDNA:LNA triplex, where the LNA strand is composed of alternating LNA and DNA nucleotides. The LNA oligonucleotide binds to the dsDNA duplex in the major groove by formation of Hoogsteen hydrogen bonds to the purine strand of the duplex. The structure of the dsDNA duplex is changed to accommodate the LNA strand, and it adopts a geometry intermediate between A- and B-type. There is a substantial propeller twist between base-paired nucleobases. This propeller twist and a concomitant large propeller twist between the purine and LNA strands allows the pyrimidines of the LNA strand to interact with the 5′-flanking duplex pyrimidines. Altogether, the triplex has a regular global geometry as shown by a straight helix axis. This shows that even though the third strand is composed of alternating DNA and LNA monomers with different sugar puckers, it forms a seamless triplex. The thermostability of the triplex is increased by 19°C relative to the unmodified DNA triplex at acidic pH. Using NMR spectroscopy, we show that the dsDNA:LNA triplex is stable at pH 8, and that the triplex structure is identical to the structure determined at pH 5.1.  相似文献   

9.
UV-absorption spectrophotometry and molecular modeling have been used to study the influence of the chemical nature of sugars (ribose or deoxyribose) on triple helix stability. For the Pyrimidine.purine* Pyrimidine motif, all eight combinations were tested with each of the three strands composed of either DNA or RNA. The chemical nature of sugars has a dramatic influence on triple helix stability. For each double helix composition, a more stable triple helix was formed when the third strand was RNA rather than DNA. No stable triple helix was detected when the polypurine sequence was made of RNA with a third strand made of DNA. Energy minimization studies using the JUMNA program suggested that interactions between the 2'-hydroxyl group of the third strand and the phosphates of the polypurine strand play an important role in determining the relative stabilities of triple-helical structures in which the polypyrimidine third strand is oriented parallel to the polypurine sequence. These interactions are not allowed when the third strand adopts an antiparallel orientation with respect to the target polypurine sequence, as observed when the third strand contains G and A or G and T/U. We show by footprinting and gel retardation experiments that an oligoribonucleotide containing G and A or G and U fails to bind double helical DNA, while the corresponding DNA oligomers form stable triple-helical complexes.  相似文献   

10.
Abstract

A set of 21 oligodeoxynucleotides were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. UV melting experiments on the triplexes which only differ in the number and distribution of third strand cytosines reveal the influence of sequence and pH on triplex stability and can be summarized as follows: (1) increasing the cytosine content in the third strand results in a higher thermal stability of the triplex at acidic pH but lowers the triplex to duplex melting temperature at neutral pH; (2) cytosines at terminal positions destabilize the triple helical structure as compared to non-terminal positions; (3) contiguous cytosines lead to a pH dependent destabilization of the triplex, the destabilizing effect being more pronounced at higher pH. Analysis of these effects in terms of the various interactions within a triple helical complex indicate that the sequence-dependent stabilities are largely determined by the extent of protonation for individual third strand cytosines.  相似文献   

11.
A set of 21 oligodeoxynucleotides were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. UV melting experiments on the triplexes which only differ in the number and distribution of third strand cytosines reveal the influence of sequence and pH on triplex stability and can be summarized as follows: (1) increasing the cytosine content in the third strand results in a higher thermal stability of the triplex at acidic pH but lowers the triplex to duplex melting temperature at neutral pH; (2) cytosines at terminal positions destabilize the triple helical structure as compared to non-terminal positions; (3) contiguous cytosines lead to a pH dependent destabilization of the triplex, the destabilizing effect being more pronounced at higher pH. Analysis of these effects in terms of the various interactions within a triple helical complex indicate that the sequence-dependent stabilities are largely determined by the extent of protonation for individual third strand cytosines.  相似文献   

12.
13.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

14.
The i-motif is a four-stranded structure formed by two intercalated parallel duplexes containing hemiprotonated C•C+ pairs. In order to describe the sequence of reactions by which four C-rich strands associate, we measured the formation and dissociation rates of three [TCn]4 tetramers (n = 3, 4 and 5), their dissociation constant and the reaction order for tetramer formation by NMR. We find that TCn association results in the formation of several tetramers differing by the number of intercalated C•C+ pairs. The formation rates of the fully and partially intercalated species are comparable but their lifetimes increase strongly with the number of intercalated C•C+ pairs, and for this reason the single tetramer detected at equilibrium is that with optimal intercalation. The tetramer half formation times vary as the power −2 of the oligonucleotide concentration indicating that the reaction order for i-motif formation is 3. This observation is inconsistent with a model supposing association of two preformed duplex and suggests that quadruplex formation proceeds via sequential strand association into duplex and triplex intermediate species and that triplex formation is rate limiting.  相似文献   

15.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

16.
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.  相似文献   

17.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

18.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

19.
G Bertucat  R Lavery    C Prvost 《Biophysical journal》1999,77(3):1562-1576
A number of studies have concluded that strand exchange between a RecA-complexed DNA single strand and a homologous DNA duplex occurs via a single-strand invasion of the minor groove of the duplex. Using molecular modeling, we have previously demonstrated the possibility of forming a parallel triple helix in which the single strand interacts with the intact duplex in the minor groove, via novel base interactions (Bertucat et al., J. Biomol. Struct. Dynam. 16:535-546). This triplex is stabilized by the stretching and unwinding imposed by RecA. In the present study, we show that the bases within this triplex are appropriately placed to undergo strand exchange. Strand exchange is found to be exothermic and to result in a triple helix in which the new single strand occupies the major groove. This structure, which can be equated to so-called R-form DNA, can be further stabilized by compression and rewinding. We are consequently able to propose a detailed, atomic-scale model of RecA-promoted strand exchange. This model, which is supported by a variety of experimental data, suggests that the role of RecA is principally to prepare the single strand for its future interactions, to guide a minor groove attack on duplex DNA, and to stabilize the resulting, stretched triplex, which intrinsically favors strand exchange. We also discuss how this mechanism can incorporate homologous recognition.  相似文献   

20.
The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号