首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Costameres, vinculin-containing structures found in skeletal and cardiac muscle, are thought to anchor the Z-discs of the peripheral myofibrils to the sarcolemma. Several lines of evidence indicate that two different sets of costameres, integrin- and N-cadherin-based, are present in cardiac muscles. In this study, immunoblot analysis was used to study the expression of N-cadherin, alpha-catenin, beta-catenin, vinculin, talin, and laminin in rat cardiac muscles at embryonic days 15 and 19, the day of birth (postnatal day 0), postnatal weeks 1, 2, 3, and 4, and in the adult. Double immunofluorescence microscopy was performed to study the spatial and temporal distribution of these two sets of costameres in rat cardiomyocytes. Costameric staining for N-cadherin, codistributed with beta-catenin, was strong from embryonic day 15 up to postnatal week 2, gradually decreased after postnatal week 3, and was undetectable at postnatal week 4 and in the adult. Confocal microscopy showed that N-cadherin colocalized with alpha-actinin at cortical myofibrils. Double-labeling of beta-catenin and talin indicated the coexistence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiac muscle. Although beta-catenin and vinculin were co-localized at the costamere of cardiomyocytes from embryonic day 15 to postnatal week 3, staining for beta-catenin or talin was mutually exclusive at all stages examined. These results demonstrate the simultaneous, but mutually exclusive, existence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiomyocytes between late embryonic stages and postnatal week 3, while only integrin/talin-based costameres were found in adult rats. The N-cadherin/catenin-based costameres in rat cardiac muscles may play a role in myofibrillogenesis similar to that of their counterparts in cultured cardiomyocytes.  相似文献   

2.
Summary Most cardiac myocytes transmit force across fasciae adherentes, specialized sites of cell-cell adhesion. However, some cardiac myocytes in papillary muscle terminate on collagenous connective tissue in the chordae tendineae. These papillary myotendinous junctions (MTJs) are specialized for force transmission from myocytes to extracellular matrix. In the present study, we compared structural molecules at papillary MTJs to those at fasciae adherentes and skeletal MTJs. By using indirect immunofluorescence, we found that papillary MTJs more closely resemble skeletal MTJs in their molecular composition in that they are enriched in talin, vinculin, integrin, and fibronectin. Zeugmatin and -actinin, both components of fasciae adherentes, are absent from papillary MTJs. Although papillary MTJs and skeletal MTJs display strong similarities in structural protein composition, ultrastructural organization of the two junctions is different. Papillary MTJs display little folding of the junctional membrane and, according to morphological criteria, more closely resemble sites of thin filament-membrane association in smooth muscle than skeletal MTJs. Thus, papillary MTJs display a combination of structural characteristics described previously in skeletal and smooth muscles but exhibit few structural features observed previously in cardiac fasciae adherentes.  相似文献   

3.
In this study, we examined the hypothesis that stretch-induced (nitric oxide) NO modulates the mechanical properties of skeletal muscles by increasing accumulation of protein levels of talin and vinculin and by inhibiting calpain-induced proteolysis, thereby stabilizing the focal contacts and the cytoskeleton. Differentiating C2C12 myotubes were subjected to a single 10% step stretch for 0–4 days. The apparent elastic modulus of the cells, Eapp, was subsequently determined by atomic force microscopy. Static stretch led to significant increases (P < 0.01) in Eapp beginning at 2 days. These increases were correlated with increases in NO activity and neuronal NO synthase (nNOS) protein expression. Expression of talin was upregulated throughout, whereas expression of vinculin was significantly increased only on days 3 and 4. Addition of the NO donor L-arginine onto stretched cells further enhanced Eapp, NOS activity, and nNOS expression, whereas the presence of the NO inhibitor N-nitro-L-arginine methyl ester (L-NAME) reversed the effects of mechanical stimulation and of L-arginine. Overall, viscous dissipation, as determined by the value of hysteresis, was not significantly altered. For assessment of the role of vinculin and talin stability, cells treated with L-NAME showed a significant decrease in Eapp, whereas addition of a calpain inhibitor abolished the effect. Thus our results show that NO inhibition of calpain-initiated cleavage of cytoskeleton proteins was correlated with the changes in Eapp. Together, our data suggest that NO modulates the mechanical behavior of skeletal muscle cells through the combined action of increased talin and vinculin levels and a decrease in calpain-mediated talin proteolysis. mechanical stimulation; apparent elastic modulus; skeletal muscle cells; nitric oxide; stretch  相似文献   

4.
Vinculin regulates cell adhesion by strengthening contacts between extracellular matrix and the cytoskeleton. Binding of the integrin ligand, talin, to the head domain of vinculin and F-actin to its tail domain is a potential mechanism for this function, but vinculin is autoinhibited by intramolecular interactions between its head and tail domain and must be activated to bind talin and actin. Because autoinhibition of vinculin occurs by synergism between two head and tail interfaces, one hypothesis is that activation could occur by two ligands that coordinately disrupt both interfaces. To test this idea we use a fluorescence resonance energy transfer probe that reports directly on activation of vinculin. Neither talin rod, VBS3 (a talin peptide that mimics a postulated activated state of talin), nor F-actin alone can activate vinculin. But in the presence of F-actin either talin rod or VBS3 induces dose-dependent activation of vinculin. The activation data are supported by solution phase binding studies, which show that talin rod or VBS3 fails to bind vinculin, whereas the same two ligands bind tightly to vinculin head domain (K(d) approximately 100 nM). These data strongly support a combinatorial mechanism of vinculin activation; moreover, they are inconsistent with a model in which talin or activated talin is sufficient to activate vinculin. Combinatorial activation implies that at cell adhesion sites vinculin is a coincidence detector awaiting simultaneous signals from talin and actin polymerization to unleash its scaffolding activity.  相似文献   

5.
Vinculin and talin are major adhesion plaque components which interact in vitro and presumably in vivo. The amino acid sequence of talin is now known so details of its domain structure can be mapped. We localized vinculin binding sites in the talin sequence by overlaying peptide maps of talin with an anti-idiotypic vinculin antibody that recognizes talin and with 125I-vinculin. A rabbit injected only twice with vinculin and producing anti-vinculin antibodies spontaneously generated a second antibody that recognizes talin. Vinculin and anti-vinculin antibodies specifically compete with this second antibody for binding to talin as determined by solid-phase binding and overlay assays. The antibody is thus most likely an anti-idiotypic antibody which mimics a region of vinculin that interacts with talin. The binding site of the anti-idiotypic antibody on talin was mapped to the 196 amino acids spanning residues 1653 to 1848. A second vinculin binding site identified with an 125I-vinculin blot overlay technique was located between residues 483 and 1652. The observation that talin has two immunologically distinct vinculin binding sites suggests that vinculin may have two different talin binding sites or one "complex" site with two interacting regions.  相似文献   

6.
This report compares cellular localization of fesselin in chicken smooth, skeletal and cardiac muscle tissues using affinity purified polyclonal fesselin antibodies. Western blot analyses revealed large amounts of fesselin in gizzard smooth muscle with lower amounts in skeletal and cardiac muscle. In gizzard, fesselin was detected by immunofluorescence as discrete cytoplasmic structures. Fesselin did not co-localize with talin, vinculin or caveolin indicating that fesselin is not associated with dense plaques or caveolar regions of the cell membrane. Immunoelectron microscopy established localization of fesselin within dense bodies. Since dense bodies function as anchorage points for actin and desmin in smooth muscle cells, fesselin may be involved in establishing cytoskeletal structure in this tissue. In skeletal muscle, fesselin was associated with desmin in regularly spaced bands distributed along the length of muscle fibers suggesting localization to the Z-line. Infrequently, this banding pattern was observed in heart tissue as well. Localization at the Z-line of skeletal and cardiac muscle suggests a role in contraction of these tissues.  相似文献   

7.
Vinculin regulates both cell-cell and cell-matrix junctions and anchors adhesion complexes to the actin cytoskeleton through its interactions with the vinculin binding sites of alpha-actinin or talin. Activation of vinculin requires a severing of the intramolecular interactions between its N- and C-terminal domains, which is necessary for vinculin to bind to F-actin; yet how this occurs in cells is not resolved. We tested the hypothesis that talin and alpha-actinin activate vinculin through their vinculin binding sites. Indeed, we show that these vinculin binding sites have a high affinity for full-length vinculin, are sufficient to sever the head-tail interactions of vinculin, and they induce conformational changes that allow vinculin to bind to F-actin. Finally, microinjection of these vinculin binding sites specifically targets vinculin in cells, disrupting its interactions with talin and alpha-actinin and disassembling focal adhesions. In their native (inactive) states the vinculin binding sites of talin and alpha-actinin are buried within helical bundles present in their central rod domains. Collectively, these results support a model where the engagement of adhesion receptors first activates talin or alpha-actinin, by provoking structural changes that allow their vinculin binding sites to swing out, which are then sufficient to bind to and activate vinculin.  相似文献   

8.
Dynamic interactions between the cytoskeleton and integrins control cell adhesion, but regulatory mechanisms remain largely undefined. Here, we tested the extent to which the autoinhibitory head-tail interaction (HTI) in vinculin regulates formation and lifetime of the talin-vinculin complex, a proposed mediator of integrin-cytoskeleton bonds. In an ectopic recruitment assay, mutational reduction of HTI drove assembly of talin-vinculin complexes, whereas ectopic complexes did not form between talin and wild-type vinculin. Moreover, reduction of HTI altered the dynamic assembly of vinculin and talin in focal adhesions. Using fluorescence recovery after photobleaching, we show that the focal adhesion residency time of vinculin was enhanced up to 3-fold by HTI mutations. The slow dynamics of vinculin correlated with exposure of its cryptic talin-binding site, and a talin-binding site mutation rescued the dynamics of activated vinculin. Significantly, HTI-deficient vinculin inhibited the focal adhesion dynamics of talin, but not paxillin or alpha-actinin. These data show that talin conformation in cells permits vinculin binding, whereas the autoinhibited conformation of vinculin constitutes the barrier to complex formation. Down-regulation of HTI in vinculin to Kd approximately 10(-7) is sufficient to induce talin binding, and HTI is essential to the dynamics of vinculin and talin at focal adhesions. We therefore conclude that vinculin conformation, as modulated by the strength of HTI, directly regulates the formation and lifetime of talin-vinculin complexes in cells.  相似文献   

9.
Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing.  相似文献   

10.
The cytoskeletal protein talin plays a key role in activating integrins and in coupling them to the actin cytoskeleton. Its N-terminal globular head, which binds beta integrins, is linked to an extended rod having a C-terminal actin binding site and several vinculin binding sites (VBSs). The NMR structure of residues 755-889 of the rod (containing a VBS) is shown to be an amphipathic four-helix bundle with a left-handed topology. A talin peptide corresponding to the VBS binds the vinculin head; the X-ray crystallographic structure of this complex shows that the residues which interact with vinculin are buried in the hydrophobic core of the talin fragment. NMR shows that the interaction involves a major structural change in the talin fragment, including unfolding of one of its helices, making the VBS accessible to vinculin. Interestingly, the talin 755-889 fragment binds more than one vinculin head molecule, suggesting that the talin rod may contain additional as yet unrecognized VBSs.  相似文献   

11.
J Q Zhang  B Elzey  G Williams  S Lu  D J Law  R Horowits 《Biochemistry》2001,40(49):14898-14906
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.  相似文献   

12.
Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds.  相似文献   

13.
Talin is a key protein involved in linking integrins to the actin cytoskeleton. The long flexible talin rod domain contains a number of binding sites for vinculin, a cytoskeletal protein important in stabilizing integrin-mediated cell-matrix junctions. Here we report the solution structure of a talin rod polypeptide (residues 1843-1973) which contains a single vinculin binding site (VBS; residues 1944-1969). Like other talin rod polypeptides, it consists of a helical bundle, in this case a four-helix bundle with a right-handed topology. The residues in the VBS important for vinculin binding were identified by studying the binding of a series of VBS-related peptides to the vinculin Vd1 domain. The key binding determinants are buried in the interior of the helical bundle, suggesting that a substantial structural change in the talin polypeptide is required for vinculin binding. Direct evidence for this was obtained by NMR and EPR spectroscopy. [1H,15N]-HSQC spectra of the talin fragment indicate that vinculin binding caused approximately two-thirds of the protein to adopt a flexible random coil. For EPR spectroscopy, nitroxide spin labels were attached to the talin polypeptide via appropriately located cysteine residues. Measurements of inter-nitroxide distances in doubly spin-labeled protein showed clearly that the helical bundle is disrupted and the mobility of the helices, except for the VBS helix, is markedly increased. Binding of vinculin to talin is thus a clear example of the unusual phenomenon of protein unfolding being required for protein/protein interaction.  相似文献   

14.
In cultured cells, the 230-kDa protein talin is found at discrete plasma membrane foci known as focal adhesions, sites that anchor the intracellular actin cytoskeleton to the extracellular matrix. The regulated assembly of focal adhesions influences the direction of cell migrations or the reorientation of cell shapes. Biochemical studies of talin have shown that it binds to the proteins integrin, vinculin, and actin in vitro. To understand the function of talin in vivo and to correlate its in vitro and in vivo biochemical properties, various genetic approaches have been adopted. With the intention of using genetics in the study of talin, we identified a homologue to mouse talin in a genetic model system, the nematode Caenorhabditis elegans. C. elegans talin is 39% identical and 59% similar to mouse talin. In wild-type adult C. elegans, talin colocalizes with integrin, vinculin, and alpha-actinin in the focal adhesion-like structures found in the body-wall muscle. By examining the organization of talin in two different C. elegans mutant strains that do not make either beta-integrin or vinculin, we were able to determine that talin does not require vinculin for its initial organization at the membrane, but that it depends critically on the presence of integrin for its initial assembly at membrane foci.  相似文献   

15.
Talin interactions with vinculin are essential for focal adhesions. Curiously, talin contains three noncontiguous vinculin binding sites (VBS) that can bind individually to the vinculin head (Vh) domain. Here we report the crystal structure of the human Vh.VBS1 complex, a validated model of the Vh.VBS2 structure, and biochemical studies that demonstrate that all of talin VBSs activate vinculin by provoking helical bundle conversion of the Vh domain, which displaces the vinculin tail (Vt) domain. Thus, helical bundle conversion is a structurally conserved response in talin-vinculin interactions. Furthermore, talin VBSs bind to Vh in a mutually exclusive manner but do differ in their affinity for Vh and in their ability to displace Vt, suggesting that the strengths of these interactions could lead to differences in signaling outcome. These findings support a model in which talin binds to and activates multiple vinculin molecules to provoke rapid reorganization of the actin cytoskeleton.  相似文献   

16.
Vinculin and talin are two major components of focal contacts which interact with each other. In order to understand how the relative levels of these proteins are maintained under various conditions, the synthesis rates and half-lives of vinculin and talin in chick embryonic fibroblasts were determined by autoradiography combined with immunoblotting. High cell density and transformation by Rous sarcoma virus decreased the vinculin synthesis rate by 40%. Upon viral transformation, the synthesis rate of talin decreased by 30%. In contrast to vinculin, the synthesis rate of talin was not affected by cell density. The effect of cell density on the synthesis rate of vinculin was retained after viral transformation, suggesting that cell density and viral transformation affect vinculin synthesis by two independent mechanisms. The synthesis rate of vinculin was approximately two to three times greater than that of talin under all conditions tested. The half-lives of vinculin and talin remained constant at different cell densities in untransformed cells (t1/2= 18–21 h), but transformation slightly decreased half-lives of both proteins (t1/2= 16–18 h). These results suggest that the decreased expression of vinculin and talin in transformed chick fibroblasts can be attributed mainly to changes in their biosynthesis rates rather than degradation. This may contribute to a decrease in the number of focal contacts in transformed cells.  相似文献   

17.
The cytoskeletal proteins talin and vinculin are localized at cell‐matrix junctions and are key regulators of cell signaling, adhesion, and migration. Talin couples integrins via its FERM domain to F‐actin and is an important regulator of integrin activation and clustering. The 220 kDa talin rod domain comprises several four‐ and five‐helix bundles that harbor amphipathic α‐helical vinculin binding sites (VBSs). In its inactive state, the hydrophobic VBS residues involved in binding to vinculin are buried within these helix bundles, and the mechanical force emanating from bound integrin receptors is thought necessary for their release and binding to vinculin. The crystal structure of a four‐helix bundle of talin that harbors one of these VBSs, coined VBS33, was recently determined. Here we report the crystal structure of VBS33 in complex with vinculin at 2 Å resolution. Notably, comparison of the apo and vinculin bound structures shows that intermolecular interactions of the VBS33 α‐helix with vinculin are more extensive than the intramolecular interactions of the VBS33 within the talin four‐helix bundle.  相似文献   

18.
Vinculin is a 130 kD cytoskeletal protein which is involved in the anchorage of actin microfilaments to the plasma membranes at sites of cell-cell and cell-matrix contacts. In this paper we prove that smooth and cardiac muscles of Xenopus laevis contain a specific isoform of vinculin not present in any other tissue including skeletal muscle and epithelia and we demonstrate that this form of the molecule is characterized by a specific state of phosphorylation. These data are discussed in view of the importance of posttranslational modifications of structural proteins, such as vinculin, in the determination of cellular behaviour during differentiation and development.  相似文献   

19.
A Molecular Dynamics Investigation of Vinculin Activation   总被引:1,自引:0,他引:1  
Vinculin activation plays a critical role in focal adhesion initiation and formation. In its native state, vinculin is in an autoinhibitory conformation in which domain 1 prevents interaction of the vinculin tail domain with actin by steric hindrance. Once activated, vinculin is able to interact with both actin and talin. Several hypotheses have been put forth addressing the mechanisms of vinculin activation. One set of studies suggests that vinculin interaction with talin is sufficient to cause activation, whereas another set of studies suggests that a simultaneous interaction with several binding partners is necessary to achieve vinculin activation. Using molecular-dynamics (MD) simulations, we investigate the mechanisms of vinculin activation and suggest both a trajectory of conformational changes leading to vinculin activation, and key structural features that are likely involved in stabilizing the autoinhibited conformation. Assuming that the simultaneous interaction of vinculin with both actin and talin causes a stretching force on vinculin, and that vinculin activation results from a removal of steric hindrance blocking the actin-binding sites, we simulate with MD the stretching and activation of vinculin. The MD simulations are further confirmed by normal-mode analysis and simulation after residue modification. Taken together, the results of these simulations suggest that bending of the vinculin-binding-site region in vinculin away from the vinculin tail is the likely trajectory of vinculin activation.  相似文献   

20.
The spatiotemporal relationships between vinculin and talin in developing chicken gizzard smooth muscle were investigated. Immunofluorescence and immunoelectron-microscopic labeling revealed that both proteins are associated with membrane-bound dense plaques in muscle cells; however, the most intense labeling for vinculin was located rather closer to the membrane than that for talin. The localization of vinculin and talin in embryonic chicken gizzards indicated that both are primarily cytoplasmic during the first 2 embryonic weeks. Only around days 16-18 does talin apparently become associated with the plasma membrane, this being concomitant with the appearance of distinct myofilament-bound dense plaques. Vinculin, on the other hand, remains primarily cytoplasmic and appears in the plaques only 1-3 days after hatching. It is thus proposed that the interactions of the dense plaque with myofilaments or with the membrane do not depend on the presence of vinculin in the plaque. Electrophoretic analyses indicated that, during development, there is no major change in the differential expression of specific vinculin isoforms. Quantitative immunoblotting analysis indicated that the vinculin content (relative to total extracted protein) is virtually constant during the last week of embryonic life. However, within 3 days of hatching, the vinculin concentration increases remarkably to over twice the embryonic level, and then slowly increases until it reaches the adult levels, which are three to four times higher than the embryonic level. The concentration of metavinculin (a 160-Kd vinculin-related protein) showed only a limited increase after hatching. We discuss the possible roles of vinculin and talin in the assembly of membrane-bound dense plaques during the different phases of smooth-muscle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号