首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Activation of macrophages is important in chronic inflammatory disease states such as atherosclerosis. Proinflammatory cytokines such as interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), or tumor necrosis factor-alpha can promote macrophage activation. Conversely, anti-inflammatory factors such as transforming growth factor-beta1 (TGF-beta1) can decrease proinflammatory activation. The molecular mediators regulating the balance of these opposing effectors remain incompletely understood. Herein, we identify Kruppel-like factor 4 (KLF4) as being markedly induced in response to IFN-gamma, LPS, or tumor necrosis factor-alpha and decreased by TGF-beta1 in macrophages. Overexpression of KLF4 in J774a macrophages induced the macrophage activation marker inducible nitric-oxide synthase and inhibited the TGF-beta1 and Smad3 target gene plasminogen activator inhibitor-1 (PAI-1). Conversely, KLF4 knockdown markedly attenuated the ability of IFN-gamma, LPS, or IFN-gamma plus LPS to induce the iNOS promoter, whereas it augmented macrophage responsiveness to TGF-beta1 and Smad3 signaling. The KLF4 induction of the iNOS promoter is mediated by two KLF DNA-binding sites at -95 and -212 bp, and mutation of these sites diminished induction by IFN-gamma and LPS. We further provide evidence that KLF4 interacts with the NF-kappaB family member p65 (RelA) to cooperatively induce the iNOS promoter. In contrast, KLF4 inhibited the TGF-beta1/Smad3 induction of the PAI-1 promoter independent of KLF4 DNA binding through a novel antagonistic competition with Smad3 for the C terminus of the coactivator p300/CBP. These findings support an important role for KLF4 as a regulator of key signaling pathways that control macrophage activation.  相似文献   

4.
5.
Inducible nitric-oxide synthase (iNOS) plays a central role in the regulation of vascular function and response to injury. A central mediator controlling iNOS expression is transforming growth factor-beta (TGF-beta), which represses its expression through a mechanism that is poorly understood. We have identified a binding site in the iNOS promoter that interacts with the nuclear heterodimer TCF11/MafG using chromatin immunoprecipitation and mutation analyses. We demonstrate that binding at this site acts to repress the induction of iNOS gene expression by cytokines. We show that this repressor is induced by TGF-beta1 and by Smad6-short, which enhances TGF-beta signaling. In contrast, the up-regulation of TCF11/MafG binding could be suppressed by overexpression of the TGF-beta inhibitor Smad7, and a small interfering RNA to TCF11 blocked the suppression of iNOS by TGF-beta. The binding of TCF11/MafG to the iNOS promoter could be enhanced by phorbol 12-myristate 13-acetate and suppressed by the protein kinase C inhibitor staurosporine. Moreover, the induction of TCF11/MafG binding by TGF-beta and Smad6-short could be blocked by staurosporine, and the effect of TGF-beta was blocked by the selective protein kinase C inhibitor calphostin C. Consistent with the in vitro data, we found suppression of TCF11 coincident with iNOS up-regulation in a rat model of endotoxemia, and we observed a highly significant negative correlation between TCF11 and nitric oxide production. Furthermore, treatment with activated protein C, a serine protease effective in septic shock, blocked the down-regulation of TCF11 and suppressed endotoxin-induced iNOS. Overall, our results demonstrate a novel mechanism by which iNOS expression is regulated in the context of inflammatory activation.  相似文献   

6.
Epidermal growth factor (EGF) is one of the trophic factors for intestinal adaptation after small bowel transplantation (SBT). A recent report indicates that nitric oxide (NO) has cytoprotective effects on bacterial translocation (BT) after SBT. We hypothesized that EGF stimulates the expression of the inducible NO synthase (iNOS) gene in the graft after SBT, followed by increased production of NO, resulting in the decrease of BT. Intestinal epithelial cells (IEC)-6 were treated with EGF and/or IL-1beta in the presence and absence of phosphatidylinositol 3-kinase (PI3-kinase) and EGF receptor kinase inhibitors (LY-294002 and tyrphostin A25). The induction of NO production and iNOS and its signal molecules, including the inhibitory protein of NF-kappaB (IkappaB), NF-kappaB, and Akt, were analyzed. IL-1beta stimulated the degradation of IkappaB and the activation of NF-kappaB but had no effect on iNOS induction. EGF, which had no effect on the NF-kappaB activation and iNOS induction, stimulated the upregulation of type 1 IL-1 receptor (IL-1R1) through PI3-kinase/Akt. Simultaneous addition of EGF and IL-1beta stimulated synergistically the induction of iNOS, leading to the increased production of NO. Our results indicate that EGF and IL-1beta stimulate two essential signals for iNOS induction in IEC-6 cells: the upregulation of IL-1R1 through PI3-kinase/Akt and the activation of NF-kappaB through IkappaB kinase, respectively. Simultaneous addition of EGF and IL-1beta can enhance the production of NO, which may contribute to the cytoprotective effect of EGF against intestinal injury.  相似文献   

7.
8.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

9.
10.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

11.
12.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-12,14-PGJ2 (15d-PGJ2), have been proposed as a new class of anti-inflammatory compounds because 15d-PGJ2 was able to inhibit the induction of inflammatory response genes such as inducible NO synthase (iNOS) and TNF (TNF-alpha) in a PPAR-dependent manner in various cell types. In primary astrocytes, the anti-inflammatory effects (inhibition of TNF-alpha, IL-1beta, IL-6, and iNOS gene expression) of 15d-PGJ2 are observed to be independent of PPARgamma. Overexpression (wild-type and dominant-negative forms) of PPARgamma and its antagonist (GW9662) did not alter the 15d-PGJ2-induced inhibition of LPS/IFN-gamma-mediated iNOS and NF-kappaB activation. The 15d-PGJ2 inhibited the inflammatory response by inhibiting IkappaB kinase activity, which leads to the inhibition of degradation of IkappaB and nuclear translocation of p65, thereby regulating the NF-kappaB pathway. Moreover, 15d-PGJ2 also inhibited the LPS/IFN-gamma-induced PI3K-Akt pathway. The 15d-PGJ2 inhibited the recruitment of p300 by NF-kappaB (p65) and down-regulated the p300-mediated induction of iNOS and NF-kappaB luciferase reporter activity. Coexpression of constitutive active Akt and PI3K (p110) reversed the 15d-PGJ2-mediated inhibition of p300-induced iNOS and NF-kappaB luciferase activity. This study demonstrates that 15d-PGJ2 suppresses inflammatory response by inhibiting NF-kappaB signaling at multiple steps as well as by inhibiting the PI3K/Akt pathway independent of PPARgamma in primary astrocytes.  相似文献   

13.
14.
The present study was undertaken to investigate the mechanism of expression of inducible nitric oxide synthase (iNOS) in human primary astrocytes. Among IL-1beta, TNF-alpha, and IFN-gamma, only IL-1beta alone was capable of inducing iNOS. Similarly, among different cytokine combinations, the combinations involving only IL-1beta as a partner were capable of inducing iNOS. The combination of IL-1beta and IFN-gamma (IL-IF) induced the expression of iNOS at the highest level. All three cytokines alone induced the activation of AP-1 while IL-1beta and TNF-alpha but not IFN-gamma induced the activation of NF-kappaB. However, among the three cytokines, only IL-1beta was capable of inducing the activation of CCAAT/enhancer-binding proteinbeta (C/EBPbeta), suggesting an essential role of C/EBPbeta in the expression of iNOS in astrocytes. Although IL-1beta and IFN-gamma alone induced the activation of AP-1, the combination of these two cytokines (IL-IF) markedly inhibited the activation of AP-1. Consistently, JNK-I, a specific inhibitor of JNK, inhibited IL-1beta-mediated activation of AP-1 and expression of iNOS. On the other hand, JNK-I had no effect on (IL-IF)-induced expression of iNOS, suggesting that the activation of AP-1 is involved only during the low level of iNOS induction by IL-1beta but not during the high level of induction by IL-IF. In contrast, the activation of gamma-activation site (GAS) was involved only during the high level of induction by IL-IF but not during the low level of induction by IL-1beta. However, the activation of NF-kappaB and C/EBPbeta was involved in the induction of iNOS by IL-1beta as well as by IL-IF.  相似文献   

15.
Toxoplasmosis is a worldwide disease caused by Toxoplasma gondii. Activated macrophages control T. gondii growth by nitric oxide (NO) production. However, T. gondii active invasion inhibits NO production, allowing parasite persistence. Here we show that the mechanism used by T. gondii to inhibit NO production persisting in activated macrophages depends on phosphatidylserine (PS) exposure. Masking PS with annexin-V on parasites or activated macrophages abolished NO production inhibition and parasite persistence. NO production inhibition depended on a transforming growth factor-beta1 (TGF-beta1) autocrine effect confirmed by the expression of Smad 2 and 3 in infected macrophages. TGF-beta1 led to inducible nitric oxide synthase (iNOS) degradation, actin filament (F-actin) depolymerization, and lack of nuclear factor-kappaB (NF-kappaB) in the nucleus. All these features were reverted by TGF-beta1 neutralizing antibody treatment. Thus, T. gondii mimics the evasion mechanism used by Leishmania amazonensis and also the anti-inflammatory response evoked by apoptotic cells.  相似文献   

16.
17.
Nonpathogenic enteric bacterial species initiate and perpetuate experimental colitis in IL-10 gene-deficient mice (IL-10(-/-)). Bacteria-specific effects on the epithelium are difficult to dissect due to the complex nature of the gut microflora. We showed that IL-10(-/-) mice compared with wild-type mice fail to inhibit proinflammatory gene expression in native intestinal epithelial cells (IEC) after the colonization with colitogenic Gram-positive Enterococcus faecalis. Interestingly, proinflammatory gene expression was transient after 1 wk of E. faecalis monoassociation in IEC from wild-type mice, but persisted after 14 wk of bacterial colonization in IL-10(-/-) mice. Accordingly, wild-type IEC expressed phosphorylated NF-kappaB subunit RelA (p65) and phosphorylated Smad2 only at day 7 after bacterial colonization, whereas E. faecalis-monoassociated IL-10(-/-) mice triggered persistent RelA, but no Smad2 phosphorylation in IEC at days 3, 7, 14, and 28. Consistent with the induction of TLR2-mediated RelA phosphorylation and proinflammatory gene expression in E. faecalis-stimulated cell lines, TLR2 protein expression was absent after day 7 from E. faecalis-monoassociated wild-type mice, but persisted in IL-10(-/-) IEC. Of note, TGF-beta1-activated Smad signaling was associated with the loss of TLR2 protein expression and the inhibition of NF-kappaB-dependent gene expression in IEC lines. In conclusion, E. faecalis-monoassociated IL-10(-/-), but not wild-type mice lack protective TGF-beta/Smad signaling and fail to inhibit TLR2-mediated proinflammatory gene expression in the intestinal epithelium, suggesting a critical role for IL-10 and TGF-beta in maintaining normal epithelial cell homeostasis in the interplay with commensal enteric bacteria.  相似文献   

18.
19.
Phosphatidylinositol 3-kinase (PI3K) is a key molecule mediating signals of insulin in vascular smooth muscle cells (VSMCs). To examine the effect of chronic activation of PI3K on the gene expression of VSMCs, membrane-targeted p110CAAX, a catalytic subunit of PI3K, was overexpressed in rat VSMCs by adenovirus-mediated gene transfer. Similar to insulin's effects, cells overexpressing p110CAAX exhibited a 10- to 15-fold increase in monocyte chemoattractant protein-1 (MCP-1) mRNA expression as compared with the control cells. Electrophoretic mobility shift assay analysis showed that the overexpression of p110CAAX activated neither the NF-kappaB binding nor the activator protein (AP-1) binding activities. We found that two CCAAT/enhancer binding protein (C/EBP) binding sites located between 2.6 and 3.6 kb upstream of the MCP-1 gene were responsible for the induction by p110CAAX. The overexpression of C/EBP-beta and C/EBP-delta but not C/EBP-alpha caused 6- to 8-fold induction of MCP-1 promoter activity. Consistently, the overexpression of p110CAAX as well as insulin induced mRNA expression and nuclear expression of C/EBP-beta and C/EBP-delta in VSMCs. These results clearly indicate that the activation of PI3K induced proinflammatory gene expression through activating C/EBP-beta and C/EBP-delta but not NF-kappaB, which may explain the proinflammatory effect of insulin in the insulin-resistant state.  相似文献   

20.
PDGF-BB (Platelet-derived growth factor BB) and TGF-beta1(transforming growth factor beta1) are important growth factors in the modulation of vascular smooth muscle cell (VSMC) proliferation and PCNA (proliferating cell nuclear antigen) expression in VSMCs. PCNA expresses at a high level in proliferating cells. The present study aims to assess the effects of PDGF-BB-induced overexpression of TGF-beta1 on PCNA in VSMCs. The downstream proteins of the TGF-beta signalling system in VSMCs, including TGF-beta type I receptor (ALK-5 in VSMCs), Smurf2, Smad2, pSmad2/3, Smad4, and Smad7, were also investigated. Our results revealed that PDGF-BB significantly increased the expressions of TGF-beta1 and PCNA, and the increase in PCNA can be partially inhibited by neutralizing anti-TGF-beta1 antibody. Furthermore, PDGF-BB increased the expression of ALK-5, Smurf2, pSmad2/3, and Smad4, but lowered the levels of Smad2 and Smad7; these alterations were partially restored by neutralizing anti-TGF-beta1 antibody. These findings suggest that PDGF-BB promotes PCNA expression in VSMCs partially through TGF-beta1 overexpression, and that the TGF-beta signalling system involves the molecular mechanism of PDGF-BB in VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号